
From KLAIM to AbC and Beyond

Rocco De Nicola
Partially funded by MIUR project

PRIN 2017FTXR7S IT MATTERS

Pisa - July 2022

IMT- School for Advanced Studies - Lucca

Outline

1. Languages for supporting the engineering of different classes of modern
distributed systems

§ network-aware programming

§ service-oriented computing

§ autonomic computing.

Programming collective adaptive systems
2. AbC: A calculus for Attribute based Programming

§ Syntax and Semantics

§ Implementations

§ Verification

Agent Based Modelling

3. LABS: A Language with Attribute-based Stigmergies

§ Syntax

§ Implementations

§ Verification

Introduction and Motivations Rocco De Nicola 1/49

Why a Languages based Approach

Languages

Languages play a key role in the engineering of systems

§ Systems must be specified as naturally as possible

§ Distinctive aspects of the domain need to be first-class citizens

§ Intuitive/concise specifications are possible and encodings can be avoided

Models

Models strictly related to languages are at least as important for effective analysis

§ high-level abstract models guarantee feasible investigations

§ the scrutiny of results (e.g., counterexample) based on system features, rather
than on their low-level representation, guarantees better feedbacks.

Introduction and Motivations Rocco De Nicola 2/49

Language-based methodology

Major challenge

The big challenge for language designers is to devise appropriate abstractions and
linguistic primitives to deal with the specificities of the systems under consideration
while relying on an appropriate semantic model.

A possible approach

Combined use of formal methods with model-driven software engineering. Key
ingredients are

1. A specification language equipped with a formal semantics

2. A programming framework with associated runtime environment

3. A number of verification techniques and associated tools

Introduction and Motivations Rocco De Nicola 3/49

Our Contributions: A timeline

1998 Klaim

2006-2009 SCC - COWS - CASPIS 2016 AbC

2012 SCEL

Network-aware programming
- awareness of the network infrastructure
- asynchronous interactions
- open-ended non-determ. environment
- computation mobility

Service-oriented computing
- services composition
- heterogeneous components
- code reuse
- interoperability

Autonomic compuFng
- reduced maintenance cost
- no human interven:on
- con:nuous monitoring
- adapta:on

Collective adaptive systems progr.
- large number of components
- decentralised control
- unpredictable environment
- emergent behaviour

Introduction and Motivations Rocco De Nicola 4/49

Our Contributions: A timeline

1998 Klaim

2006-2009 SCC - COWS - CASPIS 2016 AbC

2012 SCEL

Network-aware programming
- awareness of the network infrastructure
- asynchronous interactions
- open-ended non-determ. environment
- computation mobility

Service-oriented computing
- services composition
- heterogeneous components
- code reuse
- interoperability

Autonomic compuFng
- reduced maintenance cost
- no human interven:on
- con:nuous monitoring
- adapta:on

Collective adaptive systems progr.
- large number of components
- decentralised control
- unpredictable environment
- emergent behaviour

Autonomic
Computing with

Stigmergic
Interaction

2020 LABS

Introduction and Motivations Rocco De Nicola 5/49

Collective Adaptive Systems

We are surrounded by examples of collective systems, in the natural world

§ Bees, Fishes, Birds, . . .

Introduction and Motivations Rocco De Nicola 6/49

Collective Adaptive Systems

... and in the man-made world

§ Traffic, Epidemics, Robots, . . .

Introduction and Motivations Rocco De Nicola 7/49

Collective Adaptive Systems

Many components

From a computer science perspective, collective adaptive systems can be viewed as
consisting of a large number of interacting entities.

Local behaviour

Each entity may have its own properties, objectives and actions and at the system
level the entities combine to create the collective - emergent - behaviour.

Mutual Influence

The behaviour of the system is dependent on that of the individual entities and the
behaviour of the individuals will be influenced by the state of the overall system.

No Central Control

CAS need to operate without centralised control or direction. When conditions
within the system change it may not be feasible to have human intervention to
adjust behaviour appropriately and systems must autonomously adapt.

Introduction and Motivations Rocco De Nicola 8/49

The Scel language: ensembles

Ensembles formation

§ Attributes are used by the system components to dynamically organize
themselves into ensembles

§ Predicates P over attributes are used by components to specify the targets of
communication actions.

Knowledge
K

Processes

PΠ
Policies

Knowledge
K

Processes

PΠ
Policies

id = robot1
providedTasks = {exploreArena,dragObject}

Knowledge
K

Processes

PΠ
Policies

Pea = exploreArena ∈ ProvidedTask

id = robot2
providedTasks = {exploreArena}

id = robot3
providedTasks = {dragObject}

Pdo = dragObject ∈ ProvidedTask

§ Ensembles are determined by the predicates validated by each component

§ There is no coordinator, hence no bottleneck or critical point of failure

§ A component might be part of more than one ensemble

Introduction and Motivations Rocco De Nicola 9/49

The Scel language

Introduced to deal with the challenges posed by the design of ensembles of
autonomic components

An autonomic component in Scel:

Knowledge
K

Processes

P

I Interface

Π
Policies

§ Knowledge repositories where components store and retrieve information
about their working environment and to use it for determining and adapting
their behaviour

§ Policies regulating the inter- and intra-components interaction

§ Interfaces consisting of a collection of attributes, like provided functionalities,
spatial coordinates, group memberships, trust level, response time, ...

Introduction and Motivations Rocco De Nicola 10/49

AbC: a calculus distilled from SCEL

§ Systems are represented as sets of parallel components, each equipped with a
set of attributes whose values can be modified by internal actions.

§ Communication actions (send and receive) are decorated with predicates over
attributes that partners have to satisfy to make the interaction possible.

§ Communication takes place in an implicit multicast fashion: partners are
selected via predicates over the attributes exposed in their interfaces.

§ Components are unaware of the existence of each other and receive messages
only if they satisfy senders requirements.

§ Components can offer different views of themselves and can communicate
with different partners according to different criteria.

§ Semantics for output actions is non-blocking while input actions are blocking:
they can take place through synchronization with an available sent message.

AbC Rocco De Nicola 11/49

AbC: basic ingredients.

An AbC system consists of a set components that contain

§ a behaviour - a set of running processes

§ an environment - a map from attributes names to values

P

Q

R

a1 “ v1

a2 “ v2
a3 “ v3

...

Processes can:

§ send a message to all the components satisfying a given predicate;

§ receive a message from a component satisfying a given predicate;

§ change the environment;

§ wait until a given predicate is locally satisfied.

AbC Rocco De Nicola 12/49

AbC Syntax

Components C ::“ Γ :IP | C1}C2 | r C sŸf | r C sŹf

Processes P ::“ 0 | Πpx̃q.U | pẼ q@Π.U | xΠyP |

P1 ` P2 | P1|P2 | K px1, . . . , xnq

Updates U ::“ ra :“ E sU | P

Predicates Π ::“ tt | ff | pkpE1, . . . ,Ekq | Π1 ^ Π2 | Π1 _ Π2 | Π

Expressions E ::“ v | x | a | this.a | okpE1, . . . ,Ekq

AbC Rocco De Nicola 13/49

AbC: Interfaces

A basic component, Γ :I P, is a process P associated with an attribute
environment Γ, and an interface I .

§ The attribute environment Γ:A ÞÑ V is a partial map from attribute
identifiers with a P A to values v P V where AX V “ H. A value could be a
number, a name (string), a tuple, etc.

§ The interface I Ď A consists of a finite set of attributes names that are
exposed by a component to control the interactions with other components.

§ Attributes in I are public, and to those in dompΓq ´ I are private.

AbC Rocco De Nicola 14/49

AbC: Controlling Interaction

Two operators r C sŸf and r C sŹf are introduced to restrict information flow.
Function f associates a predicate Π to each tuple of values ṽ P V˚ and attribute
environment Γ.

§ r C sŹf is used to restrict the messages that component C can send.

§ When the message outgoes r C sŹf , the target predicate is updated to
consider also predicate Π1 “ f pΓ, ṽq

§ Only components satisfying Π^ Π1 will receive the message.
§ To prevent a specific secret s from being spread outside C , one can use

fspΓ, ṽq “ tt if s R ṽ and fspΓ, ṽq “ ff otherwise.

§ r C sŸf is used to restrict the messages that component C can receive.

§ If a component with public attribute environment Γ sends a message ṽ
to components C satisfying Π, only those components in C that satisfy
Π^ f pΓ, ṽq are eligible to receive the message.

AbC Rocco De Nicola 15/49

AbC: Processes

A process P can be the:

§ inactive process 0,

§ action-prefixed process, act.U, where act is a communication action and U is
a process possibly preceded by an attribute update,

§ self-aware process xΠyP, blocks the execution of P until predicate Π is
satisfied within the attribute environment where the process is executing and
triggers execution of P when the environment changes and Γ |ù Π

§ nondeterministic choice between two processes P1 ` P2,

§ interleaving composition of two processes P1|P2, processes can only
communicate indirectly through the attribute environment they share

§ parametrised process call with a unique identifier K and a sequence of formal
parameters px1, . . . , xnq used in the process definition K px1, . . . , xnq fi P.

AbC Rocco De Nicola 16/49

Predicate based communication

Using attributes

§ attribute-based output pẼ q@Π is used to send the evaluation of the sequence
of expressions Ẽ to the components whose attributes satisfy the predicate Π.

§ attribute-based input Πpx̃q is used to receive messages from any component
whose attributes (and possibly transmitted values) satisfy the predicate Π;
the sequence x̃ acts as a placeholder for received values.

§ attribute update ra :“ E s is used to assign the result of the evaluation of E
to the attribute identifier a. Updates are only possible after communication
actions: they can be viewed as side effects of interactions. Execution of a
communication action and the following update(s) is atomic.

Predicates can refer to public and private attributes of components.

p“Req”, 1, 3q@pi ě this.iq

can be used to send the message p“Req”, 1, 3q to all components whose attribute i
is not less than this.i.

AbC Rocco De Nicola 17/49

Semantics rules: Potential Communications

JẼKΓ “ ṽ tΠ1uΓ “ Π

Γ:I pẼ q@Π1.U
ΓÓIŹΠpṽq
ÞÝÝÝÝÝÝÑ {|Γ:I U|}

Brd

Expressions in Ẽ are evaluated to ṽ , and the closure Π of predicate Π1 under Γ is
computed then ṽ , tΠ1uΓ and Γ Ó I . Environment updates may be applied.

Γ1 |ù tΠ1rṽ{x̃suΓ1 Γ1 Ó I |ù Π

Γ1:I Π1px̃q.U
Γ1
ŹΠpṽq

ÞÝÝÝÝÝÑ {|Γ1:I Urṽ{x̃s|}
Rcv

A message can be received when Γ1 Ó I satisfies sender’s predicate Π, and the
environment of the sender Γ1 satisfies the receiving predicate tΠ1rṽ{x̃suΓ1 . Updates
U under substitution rṽ{x̃s may be applied.

Atomicity of Communications and Updates

{|C |} “
"

{|Γra ÞÑ JEKΓs:I U |} C “ Γ:I ra :“ E sU

Γ:I P C “ Γ:I P

AbC Rocco De Nicola 18/49

Semantics rules: Actual Interactions

C1
ΓŹΠpṽq
ÝÝÝÝÝÑ C 11 C2

ΓŹΠpṽq
ÝÝÝÝÝÑ C 12

C1 ‖ C2
ΓŹΠpṽq
ÝÝÝÝÝÑ C 11 ‖ C 12

Sync
C1

ΓŹΠpṽq
ÝÝÝÝÝÑ C 11 C2

ΓŹΠpṽq
ÝÝÝÝÝÑ C 12

C1 ‖ C2
ΓŹΠpṽq
ÝÝÝÝÝÑ C 11 ‖ C 12

ComL

§ Sync states that C1 and C2 can receive the same message.

§ ComL governs communication between components C1 and C2.

C
ΓŹΠpṽq
ÝÝÝÝÝÑ C 1 f pΓ, ṽq “ Π1

r C sŹf ΓŹΠ^Π1pṽq
ÝÝÝÝÝÝÝÑ r C 1 sŹf

ResO
C

ΓŹΠ^Π1
pṽq

ÝÝÝÝÝÝÝÑ C 1 f pΓ, ṽq “ Π1

r C sŸf ΓŹΠpṽq
ÝÝÝÝÝÑ r C 1 sŸf

ResI

§ ResO: if C evolves to C 1 via ΓŹΠpṽq and f pΓ, ṽq “ Π1 then r C sŹf evolves
via ΓŹ Π^ Π1pṽq to r C 1 sŹf .

§ ResI: r C sŸf will receive ṽ and evolve to r C 1 sŸf with a label ΓŹ Πpṽq

only when C
ΓŹΠ^Π1

pṽq
ÝÝÝÝÝÝÝÑ C 1 where f pΓ, ṽq “ Π1.

AbC Rocco De Nicola 19/49

Behavioural Theory for AbC

Observable Barbs

Let CÓΠ mean that component C can send a message with a predicate Π1 l Π

(i.e., C
νx̃Π1ṽ
ÝÝÝÝÑ where Π1 l Π and Π1 l ff). We write C óΠ if C _˚ C 1 ÓΠ.

Barb Preservation

R is barb-preserving iff for every pC1,C2q P R, C1ÓΠ implies C2 óΠ

Weak Reduction Barbed Congruence Relations

A Weak Reduction Barbed Relation is a symmetric relation R over the set of
AbC-components which is barb-preserving, reduction-closed, and context-closed.

Barbed Bisimilarity

Two components are weakly reduction barbed congruent, written C1 – C2, if
pC1,C2q P R for some weak reduction barbed congruent relation R.

AbC Rocco De Nicola 20/49

Full Abstraction

Weak Bisimulation

A symmetric binary relation R over the set of AbC-components is a weak
bisimulation if and only if for any pC1,C2q P R and for any λ1

C1
λ1
ÝÑ C 11 implies Dλ2 : λ1 l λ2 such that C2

pλ2
ùñ C 12 and pC 11,C

1
2q P R

Two components C1 and C2 are weakly bisimilar, written C1 « C2 if there exists a
weak bisimulation R relating them.

Theorem (Soundness)

C1 « C2 implies C1 – C2, for any two components C1 and C2.

Theorem (Completeness)

C1 – C2 implies C1 « C2, for any two components C1 and C2.

AbC Rocco De Nicola 21/49

Encoding other paradigms

A number of alternative communication paradigms can be easily modelled by
relying on AbC primitives.

Explicit Message Passing

A bπ-calculus process P is rendered as an AbC component Γ:P where Γ “ H and
the communication channel is sent as a part of the transmitted values with the
receiver checking its compatibility.

Group based Communications

The group name is encoded as an attribute in AbC. The constructs for joining or
leaving a given group can be encoded as attribute updates.

Publish-Subscribe

A Publisher sends tagged messages for all subscribers by exposing from his
environment only the current topic while subscribers check compatibility of
messages according to their subscriptions.

AbC Rocco De Nicola 22/49

Implementations issues

Many challenges:

§ Which kind of Middleware?

§ Centralized?
§ Distributed?

§ Whom checks the predicates?

§ the sender?
§ the receiver?
§ a central entities?

§ For the moment: four implementations

§ one in Java
§ two in Erlang
§ one in Go

Implementations Rocco De Nicola 23/49

AbC implementations

§ AbaCus - Java: a centralized broker, broadcast, missed performance
evaluation [ISOLA’16]

§ AErlang - Erlang: a centralized broker with different dispatching policies
[COORD’17]

§ Broadcast: Receivers checks both sending and receiving predicates
§ Push: broker checks sending predicates, receivers check receiving

predicates
§ Pull: broker checks receiving predicates, receivers check sending

predicates
§ Push-pull: broker checks both sending and receiving predicates

dynamically handling messages, good performance, deviated semantics

§ GoAt - Go: a set of broker connected in different shapes [ISOLA’18]

§ Semantics preserving implementation
§ Performance evaluation showed a tree-based structure performs best
§ However, deriving Goat code from AbC code is not immediate

Implementations Rocco De Nicola 24/49

ABEL - A programming framework for AbC

ABEL - Erlang is a recent implementation of AbC

§ Providing Inter-coordinators (tree-based) and intra-coordinators interaction

§ Supporting total-ordering and relaxed ordering of message delivery

Implementations Rocco De Nicola 25/49

ABEL - A programming framework for AbC

ABEL API offers a one-to-one correspondence with AbC constructs

C ::“ new componentpcomp name,Env , I q Create

start componentpC ,BRef q Start

BDef ::“ procpC, xvarsyq Ñ Com. Definition

BRef ::“ funpxvarsyq Ñ procpC , xvarsyq end Reference

| nil

Act ::“ txgy,m, s, xuyu Output

| txgy, r , xuyu Input

Com ::“ prefixpC, tAct,BRef uq Prefix

| choicepC, rtAct,BRef usq Choice

| parallelpC, rBRef sq Parallel

| callpC,BRef q Call

Implementations Rocco De Nicola 26/49

A model-driven approach to AbC programming

Implementations Rocco De Nicola 27/49

An example: Stable Marriage with Attributes

§ Match men and women based on their preferences on partner’s attributes

§ attributes: agents characteristics
§ preferences: interested values of partners attributes
§ An examples with 2 attributes and 2 preferences

§ Man: iteratively proposes while gradually relaxing expectations (predicates)

§ Woman: performs “select and swaps”

Implementations Rocco De Nicola 28/49

SMA properties checking with UMC

We verified for all input spaces of problems of size of 2

§ Termination - True

§ Soundness of outcomes:

§ completeness - True
§ symmetry - True
§ uniqueness - False

§ Liveness properties:

§ If a woman sends ‘yes’ she will eventually receive a ‘toolate’ or ‘confirm’
message - True

§ If a man receives a ‘split’, he will eventually send a new proposal - False
(he may immediately receive another ’yes’, and settle down)

Implementations Rocco De Nicola 29/49

Agent-based modelling (ABM)

In ABMs, complex collective phenomena are seen as emergent , i.e. as the result of
individual behaviour + interaction. There are two main approaches:

Bottom-up approach

1. Describe the behaviour of the individual agents

2. Put many agents together (e.g., by building a simulation)

3. See what happens

Top-down approach

§ Dynamical systems (population dynamics)

§ Dynamic stochastic general equilibrium (economics)

§ Fluid dynamics (traffic networks)

LAbS Rocco De Nicola 30/49

Insights

Yet a new language that naturally capture MASs

Domain-specific Provide appropriate abstractions and constructs

Flexible General enough to describe many scenarios

Rigorous Formally specified semantics

With accompanying techniques and tools to formally verify MASs

§ Exploit (& evolve with) the state of the art

§ Avoid being tied to one single verification technique

§ Push-button analysis and verification

LAbS Rocco De Nicola 31/49

Background: Virtual stigmergies (1/2)

Stigmergy

§ Stigmergy = Communication mediated by the environment

§ Virtual Stigmergy = Communication mediated by a distributed data structure

Activity

§ Agents assign a value v to a variable x

§ A timestamp t is retrieved from a clock
§ px , v , tq is stored locally (i.e., in the agent’s memory)

§ Agents use a variable x in an expression expr

§ The agent retrieves the local value of x
§ The local value is used to evaluate expr

Questions

1. Where is the communication?

2. Why the timestamps?

LAbS Rocco De Nicola 32/49

Background: Virtual stigmergies (2/2)

Asynchronously, each agent

§ Propagates px , v , tq to neighbours after an assignment to x

§ Queries neighbours “do you have something newer than px , v , tq?” after
using x (confirmation)

Newer px , v 1, t 1q is newer than px , v , tq when t 1 ą t

Neighbourhood via a link predicate ... more on this later ...

Agents react to these messages by

§ Updating and propagating local value (when receiving a newer value)

§ Propagating their up-to-date value (in reply to queries)

LAbS Rocco De Nicola 33/49

A Language with Attribute based Stigmergy

§ LAbS: A Language with Attribute-based Stigmergies

§ No direct communication

§ A system can contain multiple virtual stigmergies, each containing multiple
variables

§ “Neighbourhood” defined by a predicate link over attributes:

linkpa1, a2q “ true ðñ a1, a2 are neighbours

§ Each stigmergy may have a different definition of neighbourhood, which
applies to all its variable

§ Also supports shared variables (environment)

LAbS Rocco De Nicola 34/49

LAbS assignments

Basic building blocks of an agent’s behaviour
Each agent may perform assignments to variables:

x Ð e Local
x ð e Environment
x ø e Stigmergy

(e is an arithmetic expression)
Multiple assignments to variables of the same kind:

x , y , z Ð 1, 2, 3

LAbS Rocco De Nicola 35/49

LAbS processes

Process = Composition of assignments describing an agent’s behaviour
If P and Q are processes, then:

P;Q Do P until it terminates, then do Q (sequence)

P ` Q Do either P or Q (choice)

P | Q Alternate the execution of P and Q (parallel)

Guarded process:

g Ñ P Evaluate expression g , then:

§ If true, continue as P

§ If false, block
Infinite behaviours by defining and referring to named processes:

K fi P;K Repeatedly do P

LAbS Rocco De Nicola 36/49

Verification

Given a LAbS system S and a property φ, we would like to generate a program P
such that

P is successfully verified ðñ φ holds in S.

P is called an emulation program for xS, φy

Concurrent
Formal

Specifications
S

Property
φ

Triple structure
T

Sequential
Imperative
Program

P

Program
Verification

LAbS Rocco De Nicola 37/49

Triple structures

§ Intermediate representation of a behaviour

§ Independent of the specification language

Each elementary action (e.g., assignments) µ is encoded as a triple

xB, µ,Cy

B, C: predicates over a vector of integers pc (program counter)

B Entry condition: if satisfied, then µ may be performed

C Exit condition: when µ is performed, C will constrain the future values of pc

A triple structure xT , pc0y is a set of triples + an initial value of pc

LAbS Rocco De Nicola 38/49

Implementation:

§ Sliver: A tool for the verification of Labs systems

§ The input language is LabsM, a machine-readable extension of Labs

§ Nondeterministic initialisation of variables
§ Tuples (i.e., composite stigmergic variables)
§ Arrays
§ A simple property language for invariants/emergent properties
§ Parameterised specifications

§ The output language is either C or LNT

LAbS Rocco De Nicola 39/49

Sliver Workflow (1/2)

C-based workflow

Front end Encoder Encoder Instrumenter Backend Translator

Backend wrapper

OutcomeInput file

params

fair

backend

ϕ

S T P P1 output

params Parameter values

fair Changes the behaviour of the next() function

§ Full interleaving
§ Round-robin

LAbS Rocco De Nicola 40/49

Sliver Workflow (2/2)

LNT-based workflow

Front end Encoder Encoder

Evaluator

Executor

Translator

CADP wrapper

OutcomeInput file

params

fair

backend

simulate, steps

S

ϕ

T P

cex

trace(s)

simulate Allows to choose between

§ Verifying the system
§ Generating n simulation traces

steps Max. length of each simulation trace

LAbS Rocco De Nicola 41/49

Experimental evaluation: Examples

To show the feasibility of our approach, we built LabsM specification of several
real-world MASs both stigmergy-based and environment-based.

Stigmergy-based systems

leader Leader election

flock A system of agents that agree to move in the same direction when they are
close enough (flocking behaviour)

boids Another flocking model, with more complex behaviour

§ Agents may be either leaders or followers
§ Cohesion: faraway followers move closer to their leader

formation A system of agents moving along a segment and trying to maintain a
minimum distance from each other

LAbS Rocco De Nicola 42/49

Experimental evaluation: Examples

Environment-based systems

Two majority protocols:

§ Each agent starts with an opinion (Y or N)

§ Agents may change their opinion (or go into “intermediate states”) when
they meet others

§ Suppose that initially a majority of agents is N: then, a protocol is correct iff.
eventually all agents are N.

approx Approximate majority protocol (incorrect)

maj A provably correct protocol

LAbS Rocco De Nicola 43/49

Experimental evaluation: Properties

leader Eventually, all agents choose 0 for leader

flock Eventually, all agents move in the same direction

boids Eventually, all agents choose the same leader

formation
§ Agents never go outside the segment
§ Agents eventually stay far apart from each other

approx Minority never wins

maj § Minority never wins
§ Eventually, Majority wins

LAbS Rocco De Nicola 44/49

Invariance verification tasks and results

We selected 9 tools implementing reachability analysis based on:

§ Symbolic execution

§ Bounded Model Checking

§ Explicit-value analysis

§ Predicate abstraction

§ Automata-based verification

§ k-induction (kI)

§ Property directed reachability (PDR)

system ˆ parameters ˆ technique = 48 verification tasks:

§ At least one conclusive verdict for each system

§ All conclusive results were consistent

§ kI and PDR were able to complete all tasks with outstanding performance

LAbS Rocco De Nicola 45/49

Invariance verification tasks and results

LAbS Rocco De Nicola 46/49

Emergence verification tasks and results

3 tools, implementing termination analysis based on:

§ Symbolic execution

§ Bounded Model Checking with Completeness threshold

§ Summarization based on intervals

§ Summarization based on equalities

system ˆ parameters ˆ technique = 16 verification tasks:

§ At least one conclusive verdict for each system except maj

§ All conclusive results were consistent

§ BMC+Completeness verified all systems (except maj)

LAbS Rocco De Nicola 47/49

Bibliography

§ L. Di Stefano, R. De Nicola, O. Inverso: Verification of Distributed Systems via
Sequential Emulation. ACM Trans. Softw. Eng. Methodol. 31(3): 37:1-37:41
(2022)

§ R. De Nicola, T. Duong, M. Loreti: Provably correct implementation of the AbC
calculus. Sci. Comput. Program. 202: 102567, Elsevier 2021.

§ R. De Nicola, G.L. Ferrari, R. Pugliese, F. Tiezzi: A formal approach to the
engineering of domain- specific distributed systems. J. Log. Algebraic Methods
Program. 111: 100511, Elsevier 2020.

§ Y. Abd Alrahman, R. De Nicola, M. Loreti: Programming interactions in collective
adaptive systems by relying on attribute-based communication. Sci. Comput.
Program. 192: 102428, Elsevier 2020.

§ R. De Nicola, L. Di Stefano, O. Inverso: Multi-agent systems with virtual stigmergy.
Science of Computer Programming, Volume 187, February 2020. Elsevier 2020.

§ Y. Abd Alrahman, R. De Nicola, M. Loreti: A calculus for collective-adaptive
systems and its behavioural theory, Info&Co, vol. 268, Elsevier 2019

§ Di Stefano’s Thesis: https://hdl.handle.net/20.500.12571/10181

§ Code: https://github.com/labs-lang

LAbS Rocco De Nicola 48/49

Thank you!

LAbS Rocco De Nicola 49/49

	Introduction and Motivations
	Attribute-based communication

	AbC
	Implemenations of AbC
	LAbS

