Towards Abstract and (hopefully) Compositional Operational Reasoning

Francesco Dagnino

T-LADIES kick-off

Who am I?

Postdoc at DIBRIS University of Genoa
Programming Languages research group Genova Logic Group

Research Interests

- operational semantics and operational reasoning
- type systems (global types, session types, coeffect systems, ...)
- category theory for logics, type theories and programming languages

Reasoning about programs

formal guarantees on the behaviour of programs

- correctness of program transformations/approximations program equivalence and distance
- correctness of static/dynamic verification techniques type systems, program logics, ...

Reasoning about programs

formal guarantees on the behaviour of programs

- correctness of program transformations/approximations program equivalence and distance
- correctness of static/dynamic verification techniques type systems, program logics, ...

Bricks

- formal (mathematical) model of programs: syntax and semantics
- reasoning/proof principles and methods (induction and coinduction, logical relations and predicates, ...)

Operational vs Denotational

two approaches to formal semantics and reasoning

Operational vs Denotational

two approaches to formal semantics and reasoning
Denotational

- programs denote abstract mathematical objects (functions, relations, arrows in a category)
- abstract and quite modular theory
- heavy mathematical tools

Operational vs Denotational

two approaches to formal semantics and reasoning

Denotational

- programs denote abstract mathematical objects (functions, relations, arrows in a category)
- abstract and quite modular theory
- heavy mathematical tools

Operational

- describes how a program is executed/evaluated
- lightweight and versatile, wide applicability
- lack of abstract/general results, monolitic, case by case

Operational Reasoning

operational reasoning $=$ (formal) reasoning based on an operational semantics

Operational Reasoning

operational reasoning $=$ (formal) reasoning based on an operational semantics
several styles of operational semantics

- abstract machines
- small-step semantics
- big-step semantics
- evaluation semantics

Wishlist

all computer scientists are lazy!
reuse results/techniques already proved/introduced

Wishlist

all computer scientists are lazy!
reuse results/techniques already proved/introduced
Desiderata

- abstractness
\Rightarrow apply general results/techniques to specific instances

Wishlist

all computer scientists are lazy!
reuse results/techniques already proved/introduced

Desiderata

- abstractness
\Rightarrow apply general results/techniques to specific instances
- modularity
\Rightarrow compose results on smaller/simpler parts

Wishlist

all computer scientists are lazy!
reuse results/techniques already proved/introduced

Desiderata

- abstractness
\Rightarrow apply general results/techniques to specific instances
- modularity
\Rightarrow compose results on smaller/simpler parts

The harsh reality

- lack of abstract theories
- results tailored to specific languages
- monolitic development

What can we do?

Operational reasoning in-the-abstract first steps...

- give a general/abstract definition of operational semantics
- develop general and modular techniques

What can we do?

Operational reasoning in-the-abstract
first steps...

- give a general/abstract definition of operational semantics
- develop general and modular techniques

In this talk
Part I Abstract Big-Step Semantics
Part II Abstract Evaluation Semantics

Part I

Abstract Big-Step Semantics

An example: call-by-value λ-calculus

An example: call-by-value λ-calculus

Syntax

$$
\begin{array}{rll}
t, \mathrm{~s} & ::=x|\lambda x . t| t s & \text { expressions } \\
\mathrm{v}, \mathrm{w} & ::=\lambda x . t \mid n & \text { values }
\end{array}
$$

An example: call-by-value λ-calculus

Syntax

$$
\begin{array}{rll}
t, s & ::=x|\lambda x . t| t s & \\
\text { expressions } \\
v, w & ::=\lambda x . t \mid n & \text { values }
\end{array}
$$

Semantics

judgement: $t \Rightarrow v$
expression t evaluates to value v

An example: call-by-value λ-calculus

Syntax

$$
\begin{array}{rll}
t, s & ::=x|\lambda x . t| t s & \\
\text { expressions } \\
v, w & ::=\lambda x . t \mid n & \text { values }
\end{array}
$$

Semantics

judgement: $t \Rightarrow v$
expression t evaluates to value v

$$
\overline{v \Rightarrow v} \quad \frac{t_{1} \Rightarrow \lambda x . s \quad t_{2} \Rightarrow v \quad s[v / x] \Rightarrow w}{t_{1} t_{2} \Rightarrow w}
$$

Towards an abstract definition

guiding principles:

Towards an abstract definition

guiding principles:

- being language independent abstract from syntactic aspects similar to (abstract) rewriting systems

Towards an abstract definition

guiding principles:

- being language independent abstract from syntactic aspects similar to (abstract) rewriting systems
- describe the core structure of a big-step semantics

Towards an abstract definition

guiding principles:

- being language independent abstract from syntactic aspects similar to (abstract) rewriting systems
- describe the core structure of a big-step semantics
\Rightarrow shape of rules
describing the evaluation process

Defining big-step semantics

A big-step semantics is a triple (C, R, \mathcal{R}) where

Defining big-step semantics

A big-step semantics is a triple (C, R, \mathcal{R}) where

- C is a set of configurations
- R is a set of results

Defining big-step semantics

A big-step semantics is a triple (C, R, \mathcal{R}) where

- C is a set of configurations
- R is a set of results
- a judgement has shape $c \Rightarrow r$ configuration c evaluates to result r

Defining big-step semantics

A big-step semantics is a triple (C, R, \mathcal{R}) where

- C is a set of configurations
- R is a set of results
- a judgement has shape $c \Rightarrow r$ configuration c evaluates to result r
- \mathcal{R} is a set of rules of shape

$$
\frac{c_{1} \Rightarrow r_{1} \quad \ldots \quad c_{n} \Rightarrow r_{n}}{c \Rightarrow r}
$$

where $n \geq 0$ and premises are totally ordered (left-to-right)

Example revisited

$$
\frac{t_{1} \Rightarrow \lambda x . s \quad t_{2} \Rightarrow v \quad s[v / x] \Rightarrow w}{t_{1} t_{2} \Rightarrow w}
$$

Example revisited

$$
\frac{t_{1} \Rightarrow \lambda x . s \quad t_{2} \Rightarrow v \quad s[v / x] \Rightarrow w}{t_{1} t_{2} \Rightarrow w}
$$

- evaluate t_{1} and check that the result is an abstraction
- evaluate t_{2}
- evaluate the substitution and return the result

Example revisited

$$
\frac{t_{1} \Rightarrow \lambda x . s \quad t_{2} \Rightarrow v \quad s[v / x] \Rightarrow w}{t_{1} t_{2} \Rightarrow w}
$$

- evaluate t_{1} and check that the result is an abstraction
- evaluate t_{2}
- evaluate the substitution and return the result
other strategies
- right-to-left $\frac{t_{2} \Rightarrow v \quad t_{1} \Rightarrow \lambda x . s \quad s[v / x] \Rightarrow w}{t_{1} t_{2} \Rightarrow w}$

Example revisited

$$
\frac{t_{1} \Rightarrow \lambda x . s \quad t_{2} \Rightarrow v \quad s[v / x] \Rightarrow w}{t_{1} t_{2} \Rightarrow w}
$$

- evaluate t_{1} and check that the result is an abstraction
- evaluate t_{2}
- evaluate the substitution and return the result
other strategies
- right-to-left $\frac{t_{2} \Rightarrow v \quad t_{1} \Rightarrow \lambda x . s \quad s[v / x] \Rightarrow w}{t_{1} t_{2} \Rightarrow w}$
- late error detection $\frac{t_{1} \Rightarrow v_{1} \quad t_{2} \Rightarrow v_{2} \quad v_{1} \Rightarrow \lambda x . s \quad s\left[v_{2} / x\right] \Rightarrow w}{t_{1} t_{2} \Rightarrow w}$

Results I

An issue

in big-step semantics stuck and non-terminating computations are indistinguishable
\Rightarrow in both cases no judgement is derivable

Results I

An issue

in big-step semantics stuck and non-terminating computations are indistinguishable
\Rightarrow in both cases no judgement is derivable
we show that this distinction is hidden in any big-step semantics

- partial evaluation trees
- explicit wrong computations $c \Rightarrow$ wrong
- explicit non-terminating computations $c \Rightarrow \infty$ (or via traces)

Results II

Proof technique for soundness

A predicate on configurations is sound if the evaluation of a configuration satisfying the predicate cannot go wrong
we give a general proof technique for proving soundness w.r.t. any big-step semantics

Results II

Proof technique for soundness

A predicate on configurations is sound if the evaluation of a configuration satisfying the predicate cannot go wrong
we give a general proof technique for proving soundness w.r.t. any big-step semantics

Semantics with observations

big-step semantics describing also the observable behaviour of a program
general extension to infinite behaviour

Part II

Abstract Evaluation Semantics

Reference language

simply-typed, fine grained, call-by-value λ-calculus with generic effects:

Reference language

simply-typed, fine grained, call-by-value λ-calculus with generic effects:

$$
\begin{aligned}
& v, w::=x|c|\langle \rangle|\lambda x . t|\langle v, w\rangle \\
& t, s::=\text { val } v|v w| v .1|v .2| t \text { to } x . s \mid \gamma\left(v_{1}, \ldots, v_{n}\right) \\
& \sigma, \tau::=\zeta|\sigma \rightarrow \underline{\tau}| \sigma \times \tau \mid \mathbf{1}
\end{aligned}
$$

values and computations are kept separate

Reference language

simply-typed, fine grained, call-by-value λ-calculus with generic effects:

$$
\begin{aligned}
& v, w::=x|c|\langle \rangle|\lambda x . t|\langle v, w\rangle \\
& t, s::=\text { val } v|v w| v .1|v .2| t \text { to } x . s \mid \gamma\left(v_{1}, \ldots, v_{n}\right) \\
& \sigma, \tau::=\zeta|\sigma \rightarrow \underline{\tau}| \sigma \times \tau \mid \mathbf{1}
\end{aligned}
$$

values and computations are kept separate
$\gamma: \sigma_{1} \ldots \sigma_{n} \rightarrow \sigma$ is a (parametric) generic effect = atomic effectful operation (e.g., sempling from a distribution, storing a value in a location, ...)

Typing rules

$$
\overline{\Gamma \vdash x: \sigma}^{x: \sigma \in \Gamma}
$$

$$
\overline{\Gamma \vdash c: \zeta_{c}}
$$

$$
\begin{array}{ll}
\frac{\Gamma \vdash v_{1}: \sigma_{1} \ldots\left\ulcorner\vdash v_{n}: \sigma_{n}\right.}{\Gamma \vdash \gamma\left(v_{1}, \ldots, v_{n}\right): \underline{\sigma}} \\
& : \sigma_{1} \ldots \sigma_{n} \rightarrow \sigma \\
\frac{\Gamma \vdash v: \sigma}{\Gamma \vdash \text { val } v: \underline{\sigma}} & \frac{\Gamma \vdash t: \underline{\sigma}\ulcorner, x: \sigma \vdash s: \underline{\tau}}{\Gamma \vdash t \text { to } x \cdot s: \underline{\tau}} \\
\frac{\Gamma, x: \sigma \vdash t: \underline{\tau}}{\Gamma \vdash \lambda x . t: \sigma \rightarrow \underline{\tau}} & \frac{\Gamma \vdash v: \sigma \rightarrow \underline{\tau} \Gamma \vdash w: \sigma}{\Gamma \vdash v w: \underline{\tau}}
\end{array}
$$

$$
\overline{\Gamma \vdash\rangle: \mathbf{1}}
$$

$$
\frac{\Gamma \vdash v: \sigma \Gamma \vdash w: \tau}{\Gamma \vdash\langle v, w\rangle: \sigma \times \tau} \quad \frac{\Gamma \vdash v: \sigma \times \tau}{\Gamma \vdash v .1: \underline{\sigma}} \quad \frac{\Gamma \vdash v: \sigma \times \tau}{\Gamma \vdash v .2: \underline{\tau}}
$$

Monadic evaluation semantics

$\Lambda_{\sigma}=$ set of closed computations of type σ
$\mathcal{V}_{\sigma}=$ set of closed values of type σ

Monadic evaluation semantics

$\Lambda_{\sigma}=$ set of closed computations of type σ
$\mathcal{V}_{\sigma}=$ set of closed values of type σ let $(T, \gg=, \eta)$ be a (strong) monad on Set a monadic evaluation semantics is a (family of) function

$$
\llbracket-\rrbracket: \wedge_{\sigma} \rightarrow T\left(\mathcal{V}_{\sigma}\right)
$$

such that the following holds

Monadic evaluation semantics

$\Lambda_{\sigma}=$ set of closed computations of type σ
$\mathcal{V}_{\sigma}=$ set of closed values of type σ let $(T, \gg=, \eta)$ be a (strong) monad on Set a monadic evaluation semantics is a (family of) function

$$
\llbracket-\rrbracket: \Lambda_{\sigma} \rightarrow T\left(\mathcal{V}_{\sigma}\right)
$$

such that the following holds

$$
\begin{aligned}
\llbracket \text { val } v \rrbracket & =\eta(v) & & \llbracket(\lambda x . t) v \rrbracket
\end{aligned}=\llbracket t[v / x \rrbracket \rrbracket]
$$

where $\widehat{\gamma}: \llbracket \sigma_{1} \rrbracket \times \cdots \times \llbracket \sigma_{n} \rrbracket \rightarrow T(\llbracket \sigma \rrbracket)$ if $\gamma: \sigma_{1} \ldots \sigma_{n} \rightarrow \sigma$

Monadic evaluation semantics

$\Lambda_{\sigma}=$ set of closed computations of type σ
$\mathcal{V}_{\sigma}=$ set of closed values of type σ let $(T, \gg=, \eta)$ be a (strong) monad on Set a monadic evaluation semantics is a (family of) function

$$
\llbracket-\rrbracket: \Lambda_{\sigma} \rightarrow T\left(\mathcal{V}_{\sigma}\right)
$$

such that the following holds

$$
\begin{aligned}
& \llbracket \text { val } v \rrbracket=\eta(v) \\
& \llbracket(\lambda x . t) v \rrbracket=\llbracket t[v / x] \rrbracket \\
& \llbracket t \text { to } x . s \rrbracket=\llbracket t \rrbracket \gg=(v \mapsto \llbracket s[v / x\rceil \rrbracket) \quad \llbracket\langle v, w\rangle .1 \rrbracket=\eta(v) \\
& \llbracket \gamma\left(v_{1}, \ldots, v_{n}\right) \rrbracket=\widehat{\gamma}\left(v_{1}, \ldots, v_{n}\right) \quad \llbracket\langle v, w\rangle .2 \rrbracket=\eta(w)
\end{aligned}
$$

where $\widehat{\gamma}: \llbracket \sigma_{1} \rrbracket \times \cdots \times \llbracket \sigma_{n} \rrbracket \rightarrow T(\llbracket \sigma \rrbracket)$ if $\gamma: \sigma_{1} \ldots \sigma_{n} \rightarrow \sigma$
it is usually defined as a fixpoint

Syntactic graph

values and computation form a graph Syn where

- nodes are typing environments Γ, value type σ and computation types $\underline{\sigma}$
- edges from Γ to σ are values s.t. $\Gamma \vdash v: \sigma$ edges from Γ to $\underline{\sigma}$ are computations s.t. $\Gamma \vdash t: \underline{\sigma}$

Abstract monadic evaluation semantics

Abstract monadic evaluation semantics

let \mathcal{B} be a category with finite products
$(T, \gg=, \eta)$ a (strong) monad on \mathcal{B}

Abstract monadic evaluation semantics

let \mathcal{B} be a category with finite products
$(T, \gg=, \eta)$ a (strong) monad on \mathcal{B}

Operational Structure

a Syn-operational struture on \mathcal{B} consists of

- a diagram $S: S y n \rightarrow \mathcal{B}$ such that

$$
S\left(x_{1}: \sigma_{1}, \ldots, x_{n}: \sigma_{n}\right)=S\left(\sigma_{1}\right) \times \cdots \times S\left(\sigma_{n}\right)
$$

Abstract monadic evaluation semantics

let \mathcal{B} be a category with finite products
$(T, \gg=, \eta)$ a (strong) monad on \mathcal{B}

Operational Structure

a Syn-operational struture on \mathcal{B} consists of

- a diagram $S: S y n \rightarrow \mathcal{B}$ such that

$$
S\left(x_{1}: \sigma_{1}, \ldots, x_{n}: \sigma_{n}\right)=S\left(\sigma_{1}\right) \times \cdots \times S\left(\sigma_{n}\right)
$$

- families of arrows

$$
\begin{array}{ll}
\widehat{\imath}: 1 \rightarrow S(1) & \widehat{c}: 1 \rightarrow S(\zeta) \\
\widehat{p}_{1 \sigma, \tau}: S(\sigma \times \tau) \rightarrow S(\sigma) & \widehat{\hat{p}_{2 \sigma, \tau}}: S(\sigma \times \tau) \rightarrow S(\tau) \\
\widehat{\beta}_{\sigma, \tau}: S(\sigma \rightarrow \underline{\tau} \times S(\sigma) \rightarrow S(\tau) & \widehat{\gamma}: S\left(\sigma_{1}\right) \times \cdots \times S\left(\sigma_{n}\right) \rightarrow T(S(\sigma)) \\
\widehat{e}_{\sigma}: S(\underline{\sigma}) \rightarrow T(S(\sigma)) &
\end{array}
$$

satisfying some commutative diagrams

Example: Set-based semantics

- $S(\sigma)=\mathcal{V}_{\sigma}$ and $S(\underline{\sigma})=\Lambda_{\sigma}$ $S\left(x_{1}: \sigma_{1}, \ldots, x_{n}: \sigma_{n}\right)=\mathcal{V}_{\sigma_{1}} \times \cdots \times \mathcal{V}_{\sigma_{n}}$
- if $x_{1}: \sigma_{1}, \ldots, x_{n}: \sigma_{n} \vdash v: \sigma$ then

$$
S(v)=\left(v_{1}, \ldots, v_{n}\right) \mapsto v\left[v_{1} / x_{1}, \ldots, v_{n} / x_{n}\right]
$$

- if $x_{1}: \sigma_{1}, \ldots, x_{n}: \sigma_{n} \vdash t: \underline{\sigma}$ then

$$
S(t)=\left(v_{1}, \ldots, v_{n}\right) \mapsto t\left[v_{1} / \bar{x}_{1}, \ldots, v_{n} / x_{n}\right]
$$

Example: Set-based semantics

- $S(\sigma)=\mathcal{V}_{\sigma}$ and $S(\underline{\sigma})=\Lambda_{\sigma}$ $S\left(x_{1}: \sigma_{1}, \ldots, x_{n}: \sigma_{n}\right)=\mathcal{V}_{\sigma_{1}} \times \cdots \times \mathcal{V}_{\sigma_{n}}$
- if $x_{1}: \sigma_{1}, \ldots, x_{n}: \sigma_{n} \vdash v: \sigma$ then

$$
S(v)=\left(v_{1}, \ldots, v_{n}\right) \mapsto v\left[v_{1} / x_{1}, \ldots, v_{n} / x_{n}\right]
$$

- if $x_{1}: \sigma_{1}, \ldots, x_{n}: \sigma_{n} \vdash t: \underline{\sigma}$ then
$S(t)=\left(v_{1}, \ldots, v_{n}\right) \mapsto t\left[v_{1} / x_{1}, \ldots, v_{n} / x_{n}\right]$
- $\widehat{\beta}(\lambda x . t, v)=t[v / x]$
$\widehat{p_{i}}\left(\left\langle v_{1}, v_{2}\right\rangle\right)=v_{i}$
$\widehat{e}(t)=\llbracket t \rrbracket$

Results

- operational semantics beyond Set (e.g., stochastic λ calculus in measurable spaces)
- general definition of operational logical relations in terms of fibrations
- proved once and for all the fundamental lemma of operational logical relations
- mathematical foundations of differential logical relations for effectful higher-order distances between programs

References

- Francesco Dagnino, Viviana Bono, Elena Zucca and Mariangiola Dezani-Ciancaglini (2020). "Soundness conditions for big-step semantics". ESOP 2020
- Davide Ancona, Francesco Dagnino, Jurriaan Rot and Elena Zucca (2020). "A big-step from finite to infinite computations. ECOOP 2020, special issue in Science of Computer Programming
- Francesco Dagnino (2021). "Flexible Coinduction". PhD Thesis
- Francesco Dagnino (2022). "A meta-theory for big-step semantics". ACM Transactions on Computational Logic
- Francesco Dagnino and Francesco Gavazzo (2022). "A Fibrational Tale of Operational Logical Relations". FSCD 2022

A quick comparison

Big-Step Semantics

- more common, based on inference rules, easily understandable
- too weak structure (just sets of rules)

Evaluation Semantics

- rich structure, syntax directed
- easy to implement, formalisation in proof-assistant
- non-termination is difficult
- more sophisticated tools

We are just at the beginning!

- abstract evaluation semantics for arbitrary language
- infinite behaviour in abstract evaluation semantics (delay monad?)
- modularised versions of the two approaches
- composition operators
- language translations, morphisms of operational semantics
- ... suggestions?

Questions?

Thank you!

Diagrams for operational structures

Diagrams for operational structures

Diagrams for operational structures

