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Introduction

Motivation/aim from the project’s description

T3.3: Substructural types for entities

Applications based on complex dynamic systems as IoT applications have
to verify resource sensitive properties since often entities have limited
interaction and synchronization capabilities, computational power and
storage space.

Type systems should support the analysis of several kinds of resource
sensitive as information flow, program sensitivity, . . .

We will investigate the use of various forms of substructural types to
express such properties, i.e., type abstraction mechanisms able to control
the number of uses of a data or structure operation.
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Introduction

Motivation/aim in summary

modern applications are resource-aware

important to keep track of the use of resources

in programs, resources are modeled as variables

substructural type systems keep track of the use of variables
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Introduction

Standard type systems

Typing judgment

x1 : T1, . . . , xn : Tn ⊢ e : T

e expression

T type

Γ = x1 : T1, . . . , xn : Tn type context
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Introduction

Weakening and contraction are allowed

(weak)
Γ ⊢ e : T2

Γ, x : T1 ⊢ e : T2
(contr)

Γ, x : T1, x : T1 ⊢ e : T2

Γ, x : T1 ⊢ e : T2
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Introduction

Coeffect systems

a flexible form of substructural type systems

recently introduced [PetricekOM@ICFP14,BrunelGMZ@ESOP14]

contexts are enriched with coeffects tracking the use of variables
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Coeffect systems

Coeffect judgment

x1 :c1 T1, . . . , xn :cn Tn ⊢ e : T

e expression

T type

Γ = x1 :c1 T1, . . . , xn :cn Tn type and coeffect context

ci models how variable xi is used in e
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A simple example

Simply-typed lambda-calculus with pairs and integers

t ::= n | ⟨t1, t2⟩ | x | λx :T .t | t1 t2
n ::= 0 | 1 | −1 | 2 | −2 | . . .

T ::= int | T1 × T2 | T1 → T2
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A simple example

Rules of the standard type system

(t-const)
Γ ⊢ n : int

(t-pair)
Γ ⊢ t1 : T1 Γ ⊢ t2 : T2

Γ ⊢ ⟨t1, t2⟩ : T1 × T2

(t-var)
Γ, x : T ⊢ x : T

(t-abs)
Γ, x : T1 ⊢ t : T2

Γ ⊢ λx :T1.t : T1 −→ T2

(t-app)
Γ ⊢ t1 : T2 −→ T1 Γ ⊢ t2 : T2

Γ ⊢ t1 t2 : T1
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A simple example

Types do not track the use of variables

discard = λx :int.⟨1, 1⟩

linear = λx :int.⟨x , 1⟩
duplicate = λx :int.⟨x , x⟩

∅ ⊢ discard : int −→ int× int

∅ ⊢ linear : int −→ int× int

∅ ⊢ duplicate : int −→ int× int
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A simple example

Adding coeffects

0 assigned to unused variables

1 assigned to variables used linearly (exactly once)

ω assigned to variables used more than once
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A simple example

Lambda calculus with coeffects: enriching function types

t ::= n | ⟨t1, t2⟩ | x | λx :T .t | t1 t2
n ::= 0 | 1 | −1 | 2 | −2 | . . .

T ::= int | T1 × T2 | T1
c−→ T2
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A simple example

Lambda calculus with coeffects: typing rules

(t-pair)
Γ1 ⊢ t1 : T1 Γ2 ⊢ t2 : T2

Γ1 ⊕ Γ2 ⊢ ⟨t1, t2⟩ : T1 × T2

Γ1 ⊕ Γ2 context obtained by pointwise sum of coeffects

⊕ 0 1 ω
0 0 1 ω
1 1 ω ω
ω ω ω ω
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A simple example

Lambda calculus with coeffects: typing rules

(t-var)
0⊗ Γ, x :1 T ⊢ x : T

c ⊗ Γ context obtained by pointwise product of coeffects

⊗ 0 1 ω
0 0 0 0
1 0 1 ω
ω 0 ω ω

in 0⊗ Γ all variables have coeffect 0

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 17 / 49



A simple example

Lambda calculus with coeffects: typing rules

(t-abs)
Γ, x :c T1 ⊢ t : T2

Γ ⊢ λx :T1.t : T1
c−→ T2

annotation c = coeffect of x in the body t
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A simple example

Lambda calculus with coeffects: typing rules

(t-app)
Γ1 ⊢ t1 : T2

c−→ T1 Γ2 ⊢ t2 : T2

Γ1 ⊕ (c ⊗ Γ2) ⊢ t1 t2 : T1

sum of the coeffects of t1 and

the coeffects of the argument t2 multiplied by the coeffects of the
function
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A simple example

Typing judgments with coeffects

discard = λx :int.⟨1, 1⟩
linear = λx :int.⟨x , 1⟩
duplicate = λx :int.⟨x , x⟩

∅ ⊢ discard : int
0−→ int× int

∅ ⊢ linear : int
1−→ int× int

∅ ⊢ duplicate : int
ω−→ int× int
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A simple example

Type derivation (1): function

∅ ⊢ λx :int.⟨x , x⟩ : int ω−→ int× int
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A simple example

Type derivation (1): function

(t-abs)
x :ω int ⊢ ⟨x , x⟩ : int× int

∅ ⊢ λx :int.⟨x , x⟩ : int ω−→ int× int
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A simple example

Type derivation (1): function

(t-abs)

(t-pair)
x :1 int ⊢ x : int x :1 int ⊢ x : int
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A simple example

Type derivation (1): function

(t-abs)

(t-pair)

(t-var)
x :1 int ⊢ x : int

(t-var)
x :1 int ⊢ x : int

x :ω int ⊢ ⟨x , x⟩ : int× int

∅ ⊢ λx :int.⟨x , x⟩ : int ω−→ int× int

in the consequence of rule (t-pair) x has coeffect ω since 1⊕ 1 = ω
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A simple example

Type derivation (2): application

y :ω int ⊢ λx :int.⟨x , x⟩ y : int× int
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A simple example

Type derivation (2): application

(t-app)
∅ ⊢ λx :int.⟨x , x⟩ : int ω−→ int× int y :1 int ⊢ y : int
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A simple example

Type derivation (2): application

(t-app)

. . .

∅ ⊢ λx :int.⟨x , x⟩ : int ω−→ int× int
(t-var)

y :1 int ⊢ y : int

y :ω int ⊢ λx :int.⟨x , x⟩ y : int× int

in the consequence of rule (t-app) y has coeffect ω since ω ⊗ 1 = ω
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A simple example

Other examples: counting occurrences

tracking the exact number of occurrences of a variable in a term

coeffects = natural numbers

sum and product = sum and product in N

rules remain the same, only coeffects and their operations change
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A simple example

Typing judgments counting occurrences

discard = λx :int.⟨1, 1⟩
linear = λx :int.⟨x , 1⟩
duplicate = λx :int.⟨x , x⟩

∅ ⊢ discard : int
0−→ int× int

∅ ⊢ linear : int
1−→ int× int

∅ ⊢ duplicate : int
2−→ int× int
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A simple example

Other examples

confidentiality: check that a variable declared as private will not
become public during the execution [GaboardiKOBU@ICFP16]

noise sensitivity: outputs of function with type A
r−→ B evaluated on

input x and input x + d differ at most r ∗ d
[PierceR@ICFP10,AbelB@ICFP20]

Granule: fully-fledged Haskell-like language in which various kinds of
coeffects (counting occurences, confidentiality, . . . ) are supported
[OrchardLE@ICFP19]
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A simple example

Structure

examples show the same pattern

we can keep the rules and change only the coeffects

general structure of coeffects = semiring = (C,⊕, 0,⊗, 1) such that

(C,⊕, 0) is a commutative monoid
(C,⊗, 1) is a monoid
given c1, c2, c3 in C

c1 ⊗ (c2 ⊕ c3) = (c1 ⊗ c2)⊕ (c1 ⊗ c3)
(c1 ⊕ c2)⊗ c3 = (c1 ⊗ c3)⊕ (c2 ⊗ c3)

given c in C
0⊗ c = c ⊗ 0 = 0
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Current work

1 Introduction

2 A simple example

3 Current work

4 Future work/collaborations
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Current work

Current work: coeffects for Java-like languages

Investigate the use of coeffects to express different properties of interest in
Java-like languages

1 Sharing coeffects for an imperative Java-like calculus
[BianchiniDGZ@submitted]

2 Java-like calculus with user-defined coeffects
[BianchiniDGZ@ICTCS22]
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Current work

Sharing coeffects

coeffects modeling sharing possibly introduced by an imperative program

key issue for correctness in presence of mutable state, even more with concurrency

huge literature on sharing and mutation control, never modeled by coeffects

example of property of interest:
the result of an expression will be the unique entry point for a portion of store
hence, can be safely handled by a thread
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Current work

Sharing coeffects

assume a countable set of links ℓ with a distinguished element res

coeffects X , Y , . . . = sets of links

in a judgment Γ, x :X T1, y :Y T2 ⊢ e : T3

X ∩ Y ̸= ∅ means: sharing could be introduced between x and y

res ∈ X means: sharing could be introduced between x
and the final result
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Current work

An example

class B {int f;}
class C {B f1; B f2;}

x.f1=y; new C(z1,z2)

x :{ℓ} C,y :{ℓ} B,z1 :{res} B,z2 :{res} B ⊢ x.f1=y;new C(z1,z2) : C
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Current work

An example

x :{ℓ} C,y :{ℓ} B,z1 :{res} B,z2 :{res} B ⊢ x.f=y;new C(z1,z2) : C

z1

x

z2

y
{ℓ}

{res}
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Current work

User-defined coeffects

Java-like calculus where declared variables can be annotated by coeffects

Coeffect annotations are written in the language itself

They are expressions of (subclasses of) a predefined class Coeffect

Analogous to Java exceptions which are expressions of (subclasses of) Exception
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Current work

The Coeffect class

general structure of coeffects = semiring = (C,⊕, 0,⊗, 1)

class Coeffect {
Coeffect sum(Coeffect c) { new Coeffect() }
Coeffect mult(Coeffect c) { new Coeffect() }
Coeffect zero() { new Coeffect() }
Coeffect one() { new Coeffect() }

}
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Current work

Example of user-defined coeffects: 0, 1, ω

class Linearity extends Coeffect{
Coeffect zero(){ new Zero()}
Coeffect one(){new One()}

}
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Current work

0 coeffects

class Zero extends Linearity{
Coeffect sum(Coeffect c) {
case c of

(Linearity x) x
(Coeffect x) new Coeffect()

}
Coeffect mult(Coeffect c) {

case c of
(Linearity x) new Zero()
(Coeffect x) new Coeffect()

}
}
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Current work

1 coeffects

class One extends Linearity{
Coeffect sum(Coeffect c) {

case c of
(Zero x) new One()
(One x) new Omega()
(Omega x) new Omega()
(Coeffect x) new Coeffect()}

Coeffect mult(Coeffect c) {
case c of
(Linearity x) x
(Coeffect x) new Coeffect()

}
}
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ω coeffects

class Omega extends Linearity{
Coeffect sum(Coeffect c) {

case c of
(Linearity x) new Omega()
(Coeffect x) new Coeffect()

}
Coeffect mult(Coeffect c) {

case c of
(Zero x) new Zero()
(One x) new Omega()
(Omega x) new Omega()
(Coeffect x) new Coeffect()

}
}
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Current work

Example

class Pair {
A fst; A snd;

}

class A {
Pair discard [new Zero()] () {

return new Pair{new A(),new A()}
}

Pair linear [new One()] () {
return new Pair{this, new A()}

}

Pair duplicate [new Omega()] () {
return new Pair(this,this)

}
}
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Future work/collaborations

1 Introduction
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4 Future work/collaborations
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Future work/collaborations

Future work

From coeffects to graded modal types
with coeffect annotations it is possible to specify how a variable should
be used, but not to do the same for the result of an expression
graded modal types, which are, roughly, types annotated with
coeffects (grades), would allow to overcome this limitation

Integration of different coeffect systems

different coeffect systems coexist in Granule and our Java-like calculus
we plan to provide a general foundation
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Future work/collaborations

Hints for collaborations

Other tasks/applications where coeffects could be fruitfully employed

Implementation:

rules in coeffect systems directly lead to an algorithm (coeffects are
computed bottom up)
user-defined coeffects in Java could be implemented as an extension
to be translated in plain Java

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 47 / 49



Future work/collaborations

Thank You
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