
Coeffects:
type systems for resource analysis

Riccardo Bianchini⋆

joint work with Francesco Dagnino⋆, Paola Giannini† and Elena Zucca⋆

⋆ DIBRIS, Università di Genova

† DiSSTE, Università del Piemonte Orientale

T-Ladies kick-off
6-7 July 2022

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 1 / 49

Outline

1 Introduction

2 A simple example

3 Current work

4 Future work/collaborations

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 2 / 49

Introduction

1 Introduction

2 A simple example

3 Current work

4 Future work/collaborations

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 3 / 49

Introduction

Motivation/aim from the project’s description

T3.3: Substructural types for entities

Applications based on complex dynamic systems as IoT applications have
to verify resource sensitive properties since often entities have limited
interaction and synchronization capabilities, computational power and
storage space.

Type systems should support the analysis of several kinds of resource
sensitive as information flow, program sensitivity, . . .

We will investigate the use of various forms of substructural types to
express such properties, i.e., type abstraction mechanisms able to control
the number of uses of a data or structure operation.

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 4 / 49

Introduction

Motivation/aim from the project’s description

T3.3: Substructural types for entities

Applications based on complex dynamic systems as IoT applications have
to verify resource sensitive properties since often entities have limited
interaction and synchronization capabilities, computational power and
storage space.

Type systems should support the analysis of several kinds of resource
sensitive as information flow, program sensitivity, . . .

We will investigate the use of various forms of substructural types to
express such properties, i.e., type abstraction mechanisms able to control
the number of uses of a data or structure operation.

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 4 / 49

Introduction

Motivation/aim from the project’s description

T3.3: Substructural types for entities

Applications based on complex dynamic systems as IoT applications have
to verify resource sensitive properties since often entities have limited
interaction and synchronization capabilities, computational power and
storage space.

Type systems should support the analysis of several kinds of resource
sensitive as information flow, program sensitivity, . . .

We will investigate the use of various forms of substructural types to
express such properties, i.e., type abstraction mechanisms able to control
the number of uses of a data or structure operation.

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 4 / 49

Introduction

Motivation/aim in summary

modern applications are resource-aware

important to keep track of the use of resources

in programs, resources are modeled as variables

substructural type systems keep track of the use of variables

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 5 / 49

Introduction

Motivation/aim in summary

modern applications are resource-aware

important to keep track of the use of resources

in programs, resources are modeled as variables

substructural type systems keep track of the use of variables

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 5 / 49

Introduction

Motivation/aim in summary

modern applications are resource-aware

important to keep track of the use of resources

in programs, resources are modeled as variables

substructural type systems keep track of the use of variables

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 5 / 49

Introduction

Motivation/aim in summary

modern applications are resource-aware

important to keep track of the use of resources

in programs, resources are modeled as variables

substructural type systems keep track of the use of variables

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 5 / 49

Introduction

Standard type systems

Typing judgment

x1 : T1, . . . , xn : Tn ⊢ e : T

e expression

T type

Γ = x1 : T1, . . . , xn : Tn type context

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 6 / 49

Introduction

Weakening and contraction are allowed

(weak)
Γ ⊢ e : T2

Γ, x : T1 ⊢ e : T2
(contr)

Γ, x : T1, x : T1 ⊢ e : T2

Γ, x : T1 ⊢ e : T2

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 7 / 49

Introduction

Coeffect systems

a flexible form of substructural type systems

recently introduced [PetricekOM@ICFP14,BrunelGMZ@ESOP14]

contexts are enriched with coeffects tracking the use of variables

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 8 / 49

Introduction

Coeffect systems

Coeffect judgment

x1 :c1 T1, . . . , xn :cn Tn ⊢ e : T

e expression

T type

Γ = x1 :c1 T1, . . . , xn :cn Tn type and coeffect context

ci models how variable xi is used in e

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 9 / 49

Introduction

Coeffect systems

Coeffect judgment

x1 :c1 T1, . . . , xn :cn Tn ⊢ e : T

e expression

T type

Γ = x1 :c1 T1, . . . , xn :cn Tn type and coeffect context

ci models how variable xi is used in e

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 9 / 49

A simple example

1 Introduction

2 A simple example

3 Current work

4 Future work/collaborations

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 10 / 49

A simple example

Simply-typed lambda-calculus with pairs and integers

t ::= n | ⟨t1, t2⟩ | x | λx :T .t | t1 t2
n ::= 0 | 1 | −1 | 2 | −2 | . . .

T ::= int | T1 × T2 | T1 → T2

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 11 / 49

A simple example

Rules of the standard type system

(t-const)
Γ ⊢ n : int

(t-pair)
Γ ⊢ t1 : T1 Γ ⊢ t2 : T2

Γ ⊢ ⟨t1, t2⟩ : T1 × T2

(t-var)
Γ, x : T ⊢ x : T

(t-abs)
Γ, x : T1 ⊢ t : T2

Γ ⊢ λx :T1.t : T1 −→ T2

(t-app)
Γ ⊢ t1 : T2 −→ T1 Γ ⊢ t2 : T2

Γ ⊢ t1 t2 : T1

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 12 / 49

A simple example

Types do not track the use of variables

discard = λx :int.⟨1, 1⟩

linear = λx :int.⟨x , 1⟩
duplicate = λx :int.⟨x , x⟩

∅ ⊢ discard : int −→ int× int

∅ ⊢ linear : int −→ int× int

∅ ⊢ duplicate : int −→ int× int

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 13 / 49

A simple example

Types do not track the use of variables

discard = λx :int.⟨1, 1⟩
linear = λx :int.⟨x , 1⟩

duplicate = λx :int.⟨x , x⟩

∅ ⊢ discard : int −→ int× int

∅ ⊢ linear : int −→ int× int

∅ ⊢ duplicate : int −→ int× int

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 13 / 49

A simple example

Types do not track the use of variables

discard = λx :int.⟨1, 1⟩
linear = λx :int.⟨x , 1⟩
duplicate = λx :int.⟨x , x⟩

∅ ⊢ discard : int −→ int× int

∅ ⊢ linear : int −→ int× int

∅ ⊢ duplicate : int −→ int× int

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 13 / 49

A simple example

Types do not track the use of variables

discard = λx :int.⟨1, 1⟩
linear = λx :int.⟨x , 1⟩
duplicate = λx :int.⟨x , x⟩

∅ ⊢ discard : int −→ int× int

∅ ⊢ linear : int −→ int× int

∅ ⊢ duplicate : int −→ int× int

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 13 / 49

A simple example

Types do not track the use of variables

discard = λx :int.⟨1, 1⟩
linear = λx :int.⟨x , 1⟩
duplicate = λx :int.⟨x , x⟩

∅ ⊢ discard : int −→ int× int

∅ ⊢ linear : int −→ int× int

∅ ⊢ duplicate : int −→ int× int

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 13 / 49

A simple example

Types do not track the use of variables

discard = λx :int.⟨1, 1⟩
linear = λx :int.⟨x , 1⟩
duplicate = λx :int.⟨x , x⟩

∅ ⊢ discard : int −→ int× int

∅ ⊢ linear : int −→ int× int

∅ ⊢ duplicate : int −→ int× int

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 13 / 49

A simple example

Adding coeffects

0 assigned to unused variables

1 assigned to variables used linearly (exactly once)

ω assigned to variables used more than once

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 14 / 49

A simple example

Adding coeffects

0 assigned to unused variables

1 assigned to variables used linearly (exactly once)

ω assigned to variables used more than once

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 14 / 49

A simple example

Adding coeffects

0 assigned to unused variables

1 assigned to variables used linearly (exactly once)

ω assigned to variables used more than once

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 14 / 49

A simple example

Lambda calculus with coeffects: enriching function types

t ::= n | ⟨t1, t2⟩ | x | λx :T .t | t1 t2
n ::= 0 | 1 | −1 | 2 | −2 | . . .

T ::= int | T1 × T2 | T1
c−→ T2

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 15 / 49

A simple example

Lambda calculus with coeffects: typing rules

(t-pair)
Γ1 ⊢ t1 : T1 Γ2 ⊢ t2 : T2

Γ1 ⊕ Γ2 ⊢ ⟨t1, t2⟩ : T1 × T2

Γ1 ⊕ Γ2 context obtained by pointwise sum of coeffects

⊕ 0 1 ω
0 0 1 ω
1 1 ω ω
ω ω ω ω

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 16 / 49

A simple example

Lambda calculus with coeffects: typing rules

(t-var)
0⊗ Γ, x :1 T ⊢ x : T

c ⊗ Γ context obtained by pointwise product of coeffects

⊗ 0 1 ω
0 0 0 0
1 0 1 ω
ω 0 ω ω

in 0⊗ Γ all variables have coeffect 0

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 17 / 49

A simple example

Lambda calculus with coeffects: typing rules

(t-abs)
Γ, x :c T1 ⊢ t : T2

Γ ⊢ λx :T1.t : T1
c−→ T2

annotation c = coeffect of x in the body t

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 18 / 49

A simple example

Lambda calculus with coeffects: typing rules

(t-app)
Γ1 ⊢ t1 : T2

c−→ T1 Γ2 ⊢ t2 : T2

Γ1 ⊕ (c ⊗ Γ2) ⊢ t1 t2 : T1

sum of the coeffects of t1 and

the coeffects of the argument t2 multiplied by the coeffects of the
function

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 19 / 49

A simple example

Typing judgments with coeffects

discard = λx :int.⟨1, 1⟩
linear = λx :int.⟨x , 1⟩
duplicate = λx :int.⟨x , x⟩

∅ ⊢ discard : int
0−→ int× int

∅ ⊢ linear : int
1−→ int× int

∅ ⊢ duplicate : int
ω−→ int× int

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 20 / 49

A simple example

Typing judgments with coeffects

discard = λx :int.⟨1, 1⟩
linear = λx :int.⟨x , 1⟩
duplicate = λx :int.⟨x , x⟩

∅ ⊢ discard : int
0−→ int× int

∅ ⊢ linear : int
1−→ int× int

∅ ⊢ duplicate : int
ω−→ int× int

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 20 / 49

A simple example

Typing judgments with coeffects

discard = λx :int.⟨1, 1⟩
linear = λx :int.⟨x , 1⟩
duplicate = λx :int.⟨x , x⟩

∅ ⊢ discard : int
0−→ int× int

∅ ⊢ linear : int
1−→ int× int

∅ ⊢ duplicate : int
ω−→ int× int

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 20 / 49

A simple example

Typing judgments with coeffects

discard = λx :int.⟨1, 1⟩
linear = λx :int.⟨x , 1⟩
duplicate = λx :int.⟨x , x⟩

∅ ⊢ discard : int
0−→ int× int

∅ ⊢ linear : int
1−→ int× int

∅ ⊢ duplicate : int
ω−→ int× int

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 20 / 49

A simple example

Type derivation (1): function

∅ ⊢ λx :int.⟨x , x⟩ : int ω−→ int× int

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 21 / 49

A simple example

Type derivation (1): function

(t-abs)
x :ω int ⊢ ⟨x , x⟩ : int× int

∅ ⊢ λx :int.⟨x , x⟩ : int ω−→ int× int

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 22 / 49

A simple example

Type derivation (1): function

(t-abs)

(t-pair)
x :1 int ⊢ x : int x :1 int ⊢ x : int

x :ω int ⊢ ⟨x , x⟩ : int× int

∅ ⊢ λx :int.⟨x , x⟩ : int ω−→ int× int

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 23 / 49

A simple example

Type derivation (1): function

(t-abs)

(t-pair)

(t-var)
x :1 int ⊢ x : int

(t-var)
x :1 int ⊢ x : int

x :ω int ⊢ ⟨x , x⟩ : int× int

∅ ⊢ λx :int.⟨x , x⟩ : int ω−→ int× int

in the consequence of rule (t-pair) x has coeffect ω since 1⊕ 1 = ω

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 24 / 49

A simple example

Type derivation (2): application

y :ω int ⊢ λx :int.⟨x , x⟩ y : int× int

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 25 / 49

A simple example

Type derivation (2): application

(t-app)
∅ ⊢ λx :int.⟨x , x⟩ : int ω−→ int× int y :1 int ⊢ y : int

y :ω int ⊢ λx :int.⟨x , x⟩ y : int× int

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 26 / 49

A simple example

Type derivation (2): application

(t-app)

. . .

∅ ⊢ λx :int.⟨x , x⟩ : int ω−→ int× int
(t-var)

y :1 int ⊢ y : int

y :ω int ⊢ λx :int.⟨x , x⟩ y : int× int

in the consequence of rule (t-app) y has coeffect ω since ω ⊗ 1 = ω

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 27 / 49

A simple example

Other examples: counting occurrences

tracking the exact number of occurrences of a variable in a term

coeffects = natural numbers

sum and product = sum and product in N

rules remain the same, only coeffects and their operations change

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 28 / 49

A simple example

Other examples: counting occurrences

tracking the exact number of occurrences of a variable in a term

coeffects = natural numbers

sum and product = sum and product in N

rules remain the same, only coeffects and their operations change

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 28 / 49

A simple example

Other examples: counting occurrences

tracking the exact number of occurrences of a variable in a term

coeffects = natural numbers

sum and product = sum and product in N

rules remain the same, only coeffects and their operations change

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 28 / 49

A simple example

Other examples: counting occurrences

tracking the exact number of occurrences of a variable in a term

coeffects = natural numbers

sum and product = sum and product in N

rules remain the same, only coeffects and their operations change

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 28 / 49

A simple example

Typing judgments counting occurrences

discard = λx :int.⟨1, 1⟩
linear = λx :int.⟨x , 1⟩
duplicate = λx :int.⟨x , x⟩

∅ ⊢ discard : int
0−→ int× int

∅ ⊢ linear : int
1−→ int× int

∅ ⊢ duplicate : int
2−→ int× int

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 29 / 49

A simple example

Typing judgments counting occurrences

discard = λx :int.⟨1, 1⟩
linear = λx :int.⟨x , 1⟩
duplicate = λx :int.⟨x , x⟩

∅ ⊢ discard : int
0−→ int× int

∅ ⊢ linear : int
1−→ int× int

∅ ⊢ duplicate : int
2−→ int× int

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 29 / 49

A simple example

Typing judgments counting occurrences

discard = λx :int.⟨1, 1⟩
linear = λx :int.⟨x , 1⟩
duplicate = λx :int.⟨x , x⟩

∅ ⊢ discard : int
0−→ int× int

∅ ⊢ linear : int
1−→ int× int

∅ ⊢ duplicate : int
2−→ int× int

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 29 / 49

A simple example

Typing judgments counting occurrences

discard = λx :int.⟨1, 1⟩
linear = λx :int.⟨x , 1⟩
duplicate = λx :int.⟨x , x⟩

∅ ⊢ discard : int
0−→ int× int

∅ ⊢ linear : int
1−→ int× int

∅ ⊢ duplicate : int
2−→ int× int

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 29 / 49

A simple example

Other examples

confidentiality: check that a variable declared as private will not
become public during the execution [GaboardiKOBU@ICFP16]

noise sensitivity: outputs of function with type A
r−→ B evaluated on

input x and input x + d differ at most r ∗ d
[PierceR@ICFP10,AbelB@ICFP20]

Granule: fully-fledged Haskell-like language in which various kinds of
coeffects (counting occurences, confidentiality, . . .) are supported
[OrchardLE@ICFP19]

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 30 / 49

A simple example

Other examples

confidentiality: check that a variable declared as private will not
become public during the execution [GaboardiKOBU@ICFP16]

noise sensitivity: outputs of function with type A
r−→ B evaluated on

input x and input x + d differ at most r ∗ d
[PierceR@ICFP10,AbelB@ICFP20]

Granule: fully-fledged Haskell-like language in which various kinds of
coeffects (counting occurences, confidentiality, . . .) are supported
[OrchardLE@ICFP19]

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 30 / 49

A simple example

Other examples

confidentiality: check that a variable declared as private will not
become public during the execution [GaboardiKOBU@ICFP16]

noise sensitivity: outputs of function with type A
r−→ B evaluated on

input x and input x + d differ at most r ∗ d
[PierceR@ICFP10,AbelB@ICFP20]

Granule: fully-fledged Haskell-like language in which various kinds of
coeffects (counting occurences, confidentiality, . . .) are supported
[OrchardLE@ICFP19]

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 30 / 49

A simple example

Structure

examples show the same pattern

we can keep the rules and change only the coeffects

general structure of coeffects = semiring = (C,⊕, 0,⊗, 1) such that

(C,⊕, 0) is a commutative monoid
(C,⊗, 1) is a monoid
given c1, c2, c3 in C

c1 ⊗ (c2 ⊕ c3) = (c1 ⊗ c2)⊕ (c1 ⊗ c3)
(c1 ⊕ c2)⊗ c3 = (c1 ⊗ c3)⊕ (c2 ⊗ c3)

given c in C
0⊗ c = c ⊗ 0 = 0

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 31 / 49

A simple example

Structure

examples show the same pattern

we can keep the rules and change only the coeffects

general structure of coeffects = semiring = (C,⊕, 0,⊗, 1) such that

(C,⊕, 0) is a commutative monoid
(C,⊗, 1) is a monoid
given c1, c2, c3 in C

c1 ⊗ (c2 ⊕ c3) = (c1 ⊗ c2)⊕ (c1 ⊗ c3)
(c1 ⊕ c2)⊗ c3 = (c1 ⊗ c3)⊕ (c2 ⊗ c3)

given c in C
0⊗ c = c ⊗ 0 = 0

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 31 / 49

A simple example

Structure

examples show the same pattern

we can keep the rules and change only the coeffects

general structure of coeffects = semiring = (C,⊕, 0,⊗, 1) such that

(C,⊕, 0) is a commutative monoid
(C,⊗, 1) is a monoid
given c1, c2, c3 in C

c1 ⊗ (c2 ⊕ c3) = (c1 ⊗ c2)⊕ (c1 ⊗ c3)
(c1 ⊕ c2)⊗ c3 = (c1 ⊗ c3)⊕ (c2 ⊗ c3)

given c in C
0⊗ c = c ⊗ 0 = 0

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 31 / 49

Current work

1 Introduction

2 A simple example

3 Current work

4 Future work/collaborations

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 32 / 49

Current work

Current work: coeffects for Java-like languages

Investigate the use of coeffects to express different properties of interest in
Java-like languages

1 Sharing coeffects for an imperative Java-like calculus
[BianchiniDGZ@submitted]

2 Java-like calculus with user-defined coeffects
[BianchiniDGZ@ICTCS22]

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 33 / 49

Current work

Sharing coeffects

coeffects modeling sharing possibly introduced by an imperative program

key issue for correctness in presence of mutable state, even more with concurrency

huge literature on sharing and mutation control, never modeled by coeffects

example of property of interest:
the result of an expression will be the unique entry point for a portion of store
hence, can be safely handled by a thread

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 34 / 49

Current work

Sharing coeffects

coeffects modeling sharing possibly introduced by an imperative program

key issue for correctness in presence of mutable state, even more with concurrency

huge literature on sharing and mutation control, never modeled by coeffects

example of property of interest:
the result of an expression will be the unique entry point for a portion of store
hence, can be safely handled by a thread

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 34 / 49

Current work

Sharing coeffects

assume a countable set of links ℓ with a distinguished element res

coeffects X , Y , . . . = sets of links

in a judgment Γ, x :X T1, y :Y T2 ⊢ e : T3

X ∩ Y ̸= ∅ means: sharing could be introduced between x and y

res ∈ X means: sharing could be introduced between x
and the final result

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 35 / 49

Current work

Sharing coeffects

assume a countable set of links ℓ with a distinguished element res

coeffects X , Y , . . . = sets of links

in a judgment Γ, x :X T1, y :Y T2 ⊢ e : T3

X ∩ Y ̸= ∅ means: sharing could be introduced between x and y

res ∈ X means: sharing could be introduced between x
and the final result

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 35 / 49

Current work

Sharing coeffects

assume a countable set of links ℓ with a distinguished element res

coeffects X , Y , . . . = sets of links

in a judgment Γ, x :X T1, y :Y T2 ⊢ e : T3

X ∩ Y ̸= ∅ means: sharing could be introduced between x and y

res ∈ X means: sharing could be introduced between x
and the final result

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 35 / 49

Current work

Sharing coeffects

assume a countable set of links ℓ with a distinguished element res

coeffects X , Y , . . . = sets of links

in a judgment Γ, x :X T1, y :Y T2 ⊢ e : T3

X ∩ Y ̸= ∅ means: sharing could be introduced between x and y

res ∈ X means: sharing could be introduced between x
and the final result

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 35 / 49

Current work

An example

class B {int f;}
class C {B f1; B f2;}

x.f1=y; new C(z1,z2)

x :{ℓ} C,y :{ℓ} B,z1 :{res} B,z2 :{res} B ⊢ x.f1=y;new C(z1,z2) : C

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 36 / 49

Current work

An example

x :{ℓ} C,y :{ℓ} B,z1 :{res} B,z2 :{res} B ⊢ x.f=y;new C(z1,z2) : C

z1

x

z2

y
{ℓ}

{res}

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 37 / 49

Current work

User-defined coeffects

Java-like calculus where declared variables can be annotated by coeffects

Coeffect annotations are written in the language itself

They are expressions of (subclasses of) a predefined class Coeffect

Analogous to Java exceptions which are expressions of (subclasses of) Exception

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 38 / 49

Current work

The Coeffect class

general structure of coeffects = semiring = (C,⊕, 0,⊗, 1)

class Coeffect {
Coeffect sum(Coeffect c) { new Coeffect() }
Coeffect mult(Coeffect c) { new Coeffect() }
Coeffect zero() { new Coeffect() }
Coeffect one() { new Coeffect() }

}

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 39 / 49

Current work

Example of user-defined coeffects: 0, 1, ω

class Linearity extends Coeffect{
Coeffect zero(){ new Zero()}
Coeffect one(){new One()}

}

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 40 / 49

Current work

0 coeffects

class Zero extends Linearity{
Coeffect sum(Coeffect c) {
case c of

(Linearity x) x
(Coeffect x) new Coeffect()

}
Coeffect mult(Coeffect c) {

case c of
(Linearity x) new Zero()
(Coeffect x) new Coeffect()

}
}

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 41 / 49

Current work

1 coeffects

class One extends Linearity{
Coeffect sum(Coeffect c) {

case c of
(Zero x) new One()
(One x) new Omega()
(Omega x) new Omega()
(Coeffect x) new Coeffect()}

Coeffect mult(Coeffect c) {
case c of
(Linearity x) x
(Coeffect x) new Coeffect()

}
}

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 42 / 49

Current work

ω coeffects

class Omega extends Linearity{
Coeffect sum(Coeffect c) {

case c of
(Linearity x) new Omega()
(Coeffect x) new Coeffect()

}
Coeffect mult(Coeffect c) {

case c of
(Zero x) new Zero()
(One x) new Omega()
(Omega x) new Omega()
(Coeffect x) new Coeffect()

}
}

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 43 / 49

Current work

Example

class Pair {
A fst; A snd;

}

class A {
Pair discard [new Zero()] () {

return new Pair{new A(),new A()}
}

Pair linear [new One()] () {
return new Pair{this, new A()}

}

Pair duplicate [new Omega()] () {
return new Pair(this,this)

}
}

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 44 / 49

Future work/collaborations

1 Introduction

2 A simple example

3 Current work

4 Future work/collaborations

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 45 / 49

Future work/collaborations

Future work

From coeffects to graded modal types
with coeffect annotations it is possible to specify how a variable should
be used, but not to do the same for the result of an expression
graded modal types, which are, roughly, types annotated with
coeffects (grades), would allow to overcome this limitation

Integration of different coeffect systems

different coeffect systems coexist in Granule and our Java-like calculus
we plan to provide a general foundation

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 46 / 49

Future work/collaborations

Future work

From coeffects to graded modal types
with coeffect annotations it is possible to specify how a variable should
be used, but not to do the same for the result of an expression
graded modal types, which are, roughly, types annotated with
coeffects (grades), would allow to overcome this limitation

Integration of different coeffect systems

different coeffect systems coexist in Granule and our Java-like calculus
we plan to provide a general foundation

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 46 / 49

Future work/collaborations

Hints for collaborations

Other tasks/applications where coeffects could be fruitfully employed

Implementation:

rules in coeffect systems directly lead to an algorithm (coeffects are
computed bottom up)
user-defined coeffects in Java could be implemented as an extension
to be translated in plain Java

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 47 / 49

Future work/collaborations

Thank You

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 48 / 49

Future work/collaborations

Bibliography

Tomas Petricek, Dominic Orchard, and Alan Mycroft, Coeffects: A calculus of
context-dependent computation, ICFP 2014

Alöıs Brunel, Marco Gaboardi, Damiano Mazza and Steve Zdancewic, A Core
Quantitative Coeffect Calculus, ICFP 2014

Dominic Orchard, Vilem-Benjamin Liepelt and Harley Eades III, Quantitative Program
Reasoning with Graded Modal Types, ICFP 2019

Marco Gaboardi, Shin-ya Katsumata, Dominic Orchard, Flavien Breuvart and Tarmo
Uustalu, Quantitative Program Reasoning with Graded Modal Types, ICFP 2016

Pritam Choudhury, Harley Eades III, and Richard A. Eisenberg and Stephanie Weirich, A
graded dependent type system with a usage-aware semantics, POPL 2021

Jason Reed and Benjamin Pierce, Distance Makes the Types Grow Stronger, ICFP 2010

Andreas Abel and Jean-Philippe Bernardy, A Unified View of Modalities in Type
Systems, ICFP 2020

Dominic Orchard, Vilem-Benjamin Liepelt, Harley Eades III, Quantitative Program

Reasoning with Graded Modal Types, ICFP 2019

R. Bianchini Coeffects: type systems for resource analysis 6-7 July 2022 49 / 49

	Introduction
	A simple example
	Current work
	Future work/collaborations

