Non-regular corecursive streams

Pietro Barbieri
Joint work with: Davide Ancona and Elena Zucca
DIBRIS, University of Genova
T-LADIES kick-off meeting
July 6-7, 2022

Problem description

(Conceptually) infinite structures are hard to manage
E.g.: streams in loT contexts, infinite trees, ...

Problem description

(Conceptually) infinite structures are hard to manage
E.g.: streams in loT contexts, infinite trees, ...

Main issues

- Representation

Problem description

(Conceptually) infinite structures are hard to manage
E.g.: streams in loT contexts, infinite trees, ...

Main issues

- Representation
- Manipulation

Problem description

(Conceptually) infinite structures are hard to manage
E.g.: streams in loT contexts, infinite trees, ...

Main issues

- Representation
- Manipulation
- Identification of ill-formed definitions

Aim of the work

Design a calculus to:

- Finitely represent infinite streams

Aim of the work

Design a calculus to:

- Finitely represent infinite streams
- Study properties of entire streams

Aim of the work

Design a calculus to：
－Finitely represent infinite streams
－Study properties of entire streams
－Statically check the correctness of stream definitions

Aim of the work

Design a calculus to:

- Finitely represent infinite streams
- Study properties of entire streams
- Statically check the correctness of stream definitions

Possible application: testing of loT systems

- Generation of complex streams

Aim of the work

Design a calculus to:

- Finitely represent infinite streams
- Study properties of entire streams
- Statically check the correctness of stream definitions

Possible application: testing of loT systems

- Generation of complex streams
- Possibility of relying on common stream processing functions

State of the art

State of the art: lazy evaluation

- Well-established solution for data stream generation and processing

State of the art: lazy evaluation

- Well-established solution for data stream generation and processing
- Haskell examples:

State of the art: lazy evaluation

- Well-established solution for data stream generation and processing
- Haskell examples:
- one_two $=1: 2:$ one_two

State of the art: lazy evaluation

- Well-established solution for data stream generation and processing
- Haskell examples:
- one_two $=1: 2:$ one_two
- from $n=n:$ from $(n+1)$

State of the art: lazy evaluation

- Well-established solution for data stream generation and processing
- Haskell examples:
- one_two $=1: 2:$ one_two
- from $n=n$:from $(n+1)$
- Operations that inspect the whole structure diverge

State of the art: lazy evaluation

- Well-established solution for data stream generation and processing
- Haskell examples:
- one_two $=1: 2:$ one_two
- from $n=n$:from $(n+1)$
- Operations that inspect the whole structure diverge
- one_two == one_two

State of the art: lazy evaluation

- Well-established solution for data stream generation and processing
- Haskell examples:
- one_two = 1:2:one_two
- from $\mathrm{n}=\mathrm{n}:$ from $(\mathrm{n}+1)$
- Operations that inspect the whole structure diverge
- one_two == one_two
- Moreover, ill-formed definitions allowed:

State of the art: lazy evaluation

- Well-established solution for data stream generation and processing
- Haskell examples:
- one_two = 1:2:one_two
- from $\mathrm{n}=\mathrm{n}:$ from $(\mathrm{n}+1)$
- Operations that inspect the whole structure diverge
- one_two == one_two
- Moreover, ill-formed definitions allowed:
- bad_stream = bad_stream

State of the art: lazy evaluation

- Well-established solution for data stream generation and processing
- Haskell examples:
- one_two = 1:2:one_two
- from $\mathrm{n}=\mathrm{n}:$ from $(\mathrm{n}+1)$
- Operations that inspect the whole structure diverge
- one_two == one_two
- Moreover, ill-formed definitions allowed:
- bad_stream = bad_stream
- Well-definedness of streams not decidable in Haskell

State of the art: Regular corecursion

- Infinite streams finitely represented by sets of equations built only on the stream constructor

State of the art: Regular corecursion

- Infinite streams finitely represented by sets of equations built only on the stream constructor
- Regular (cyclic) streams are supported

State of the art: Regular corecursion

- Infinite streams finitely represented by sets of equations built only on the stream constructor
- Regular (cyclic) streams are supported
- Functions are regularly corecursive:

State of the art: Regular corecursion

- Infinite streams finitely represented by sets of equations built only on the stream constructor
- Regular (cyclic) streams are supported
- Functions are regularly corecursive:
- Execution keeps track of pending function calls

State of the art: Regular corecursion

- Infinite streams finitely represented by sets of equations built only on the stream constructor
- Regular (cyclic) streams are supported
- Functions are regularly corecursive:
- Execution keeps track of pending function calls
- Non-termination avoided

State of the art: Regular corecursion

- Infinite streams finitely represented by sets of equations built only on the stream constructor
- Regular (cyclic) streams are supported
- Functions are regularly corecursive:
- Execution keeps track of pending function calls
- Non-termination avoided
- one_two() = 1:2:one_two() $\longrightarrow x=1: 2: x$

State of the art: Regular corecursion

- Infinite streams finitely represented by sets of equations built only on the stream constructor
- Regular (cyclic) streams are supported
- Functions are regularly corecursive:
- Execution keeps track of pending function calls
- Non-termination avoided
- one_two() = 1:2:one_two() $\longrightarrow x=1: 2: x$
- one_two() == one_two()) \longrightarrow true

State of the art: Regular corecursion

- Infinite streams finitely represented by sets of equations built only on the stream constructor
- Regular (cyclic) streams are supported
- Functions are regularly corecursive:
- Execution keeps track of pending function calls
- Non-termination avoided
- one_two() = 1:2:one_two() $\longrightarrow x=1: 2: x$
- one_two() == one_two()) \longrightarrow true
- However, fails to model non-regular streams

State of the art: Regular corecursion

- Infinite streams finitely represented by sets of equations built only on the stream constructor
- Regular (cyclic) streams are supported
- Functions are regularly corecursive:
- Execution keeps track of pending function calls
- Non-termination avoided
- one_two() = 1:2:one_two() $\longrightarrow x=1: 2: x$
- one_two() == one_two()) \longrightarrow true
- However, fails to model non-regular streams
- No value for from(0)

Non-regular corecursive streams

Our approach

- Keeps the benefits of regular corecursion

Our approach

- Keeps the benefits of regular corecursion
- Functions can also return non-regular streams

Our approach

- Keeps the benefits of regular corecursion
- Functions can also return non-regular streams
- $\operatorname{repeat}(n)=n: \operatorname{repeat}(n)$
from $(n)=n:(\operatorname{from}(n)[+] \operatorname{repeat}(1))$
pointwise addition $[+]$ on streams allowed in equations similarly as the stream constructor _:-

Our approach

- Keeps the benefits of regular corecursion
- Functions can also return non-regular streams
- $\operatorname{repeat}(n)=n: \operatorname{repeat}(n)$

$$
\operatorname{from}(n)=n:(\operatorname{from}(n)[+] r e p e a t(1))
$$

pointwise addition $[+]$ on streams allowed in equations similarly as the stream constructor _: _

- Decidable procedure to check whether a stream is well-defined

Our approach

- Keeps the benefits of regular corecursion
- Functions can also return non-regular streams
- $\operatorname{repeat}(n)=n: \operatorname{repeat}(n)$
from $(n)=n:(\operatorname{from}(n)[+] r e p e a t(1))$
pointwise addition $[+]$ on streams allowed in equations similarly as the stream constructor _:-
- Decidable procedure to check whether a stream is well-defined
- Only well-defined streams accepted at runtime

Our approach

- Keeps the benefits of regular corecursion
- Functions can also return non-regular streams
- $\operatorname{repeat}(n)=n: \operatorname{repeat}(n)$

$$
\operatorname{from}(n)=n:(\operatorname{from}(n)[+] r e p e a t(1))
$$

pointwise addition [+] on streams allowed in equations similarly as the stream constructor _: _

- Decidable procedure to check whether a stream is well-defined
- Only well-defined streams accepted at runtime
- Decidable procedure to check the equality of two streams

Syntax of the calculus

$$
\begin{aligned}
& \overline{f d} \quad::=f d_{1} \ldots f d_{n} \\
& f d \quad::=f(\bar{x})=s e \\
& \text { e } \quad::=s e|n e| b e \\
& \text { se } \quad::=x \mid \text { if be then } s e_{1} \text { else } s e_{2}|n e: s e| s e^{\wedge}\left|s e_{1} o p s e_{2}\right| f(\bar{e}) \\
& \text { ne } \quad::=x|\operatorname{se}(n e)| n e_{1} \text { nop }^{n} e_{2}|0| 1|2| \ldots \\
& \text { be } \quad::=x \mid \text { true } \mid \text { false } \mid \ldots \\
& \text { op }::=[n o p]| | \mid \\
& \text { nop }::=+|-|*| /
\end{aligned}
$$

- Program = sequence of mutually recursive function declarations
- Functions can only return streams
- Expressions can be: streams, numeric values, booleans

Simple examples

- one_two() = 1:2:one_two()

Simple examples
$\begin{aligned} \text { - one_two }() & =1: 2: \text { one_two }() \\ \text { one_two }() & \longrightarrow(x, \quad\{x \mapsto 1: 2: x\})\end{aligned}$

Simple examples

- one_two() = 1:2:one_two()
one_two ()$\longrightarrow(x,\{x \mapsto 1: 2: x\})$
- $\operatorname{repeat}(\mathrm{n})=\mathrm{n}: \operatorname{repeat}(\mathrm{n})$

Simple examples

- one_two() = 1:2:one_two()
one_two ()$\longrightarrow(x, \quad\{x \mapsto 1: 2: x\})$
- $\operatorname{repeat}(n)=n: \operatorname{repeat}(n)$
repeat $(1) \longrightarrow(y,\{y \mapsto 1: y\})$

Simple examples

- one_two() = 1:2:one_two() one_two ()$\longrightarrow(x,\{x \mapsto 1: 2: x\})$
- $\operatorname{repeat}(\mathrm{n})=\mathrm{n}: \operatorname{repeat}(\mathrm{n})$
$\operatorname{repeat}(1) \longrightarrow(y,\{y \mapsto 1: y\})$
- $\operatorname{incr}(s)=s[+]$ repeat (1)

Simple examples

- one_two() = 1:2:one_two() one_two ()$\longrightarrow(x, \quad\{x \mapsto 1: 2: x\})$
- $\operatorname{repeat}(\mathrm{n})=\mathrm{n}: \operatorname{repeat}(\mathrm{n})$
$\operatorname{repeat}(1) \longrightarrow(y,\{y \mapsto 1: y\})$
- $\operatorname{incr}(s)=s[+] r e p e a t(1)$

$$
\text { incr(one_two()) } \longrightarrow(x[+] y,\{x \mapsto 1: 2: x, y \mapsto 1: y\})
$$

Simple examples

- one_two() = 1:2:one_two() one_two ()$\longrightarrow(x, \quad\{x \mapsto 1: 2: x\})$
- $\operatorname{repeat}(\mathrm{n})=\mathrm{n}: \operatorname{repeat}(\mathrm{n})$
$\operatorname{repeat}(1) \longrightarrow(y,\{y \mapsto 1: y\})$
- $\operatorname{incr}(s)=s[+] r e p e a t(1)$

$$
\begin{aligned}
& \text { incr(one_two()) } \longrightarrow(x[+] y,\{x \mapsto 1: 2: x, y \mapsto 1: y\}) \\
& \text { incr(one_two()) }(0)
\end{aligned}
$$

Simple examples

- one_two() = 1:2:one_two() one_two ()$\longrightarrow(x, \quad\{x \mapsto 1: 2: x\})$
- $\operatorname{repeat}(\mathrm{n})=\mathrm{n}: \operatorname{repeat}(\mathrm{n})$
$\operatorname{repeat}(1) \longrightarrow(y,\{y \mapsto 1: y\})$
- $\operatorname{incr}(s)=s[+] r e p e a t(1)$

$$
\begin{aligned}
& \text { incr(one_two()) } \longrightarrow(x[+] y,\{x \mapsto 1: 2: x, y \mapsto 1: y\}) \\
& \text { incr }(\text { one_two }())(0) \longrightarrow(x[+] y)(0)
\end{aligned}
$$

Simple examples

- one_two() = 1:2:one_two() one_two ()$\longrightarrow(x, \quad\{x \mapsto 1: 2: x\})$
- $\operatorname{repeat}(\mathrm{n})=\mathrm{n}: \operatorname{repeat}(\mathrm{n})$
$\operatorname{repeat}(1) \longrightarrow(y,\{y \mapsto 1: y\})$
- $\operatorname{incr}(s)=s[+] r e p e a t(1)$

$$
\begin{aligned}
& \operatorname{incr}(\text { one_two }()) \longrightarrow(x[+] y,\{x \mapsto 1: 2: x, y \mapsto 1: y\}) \\
& \operatorname{incr}(\text { one_two }())(0) \longrightarrow(x[+] y)(0) \longrightarrow x(0)+y(0)
\end{aligned}
$$

Simple examples

- one_two() = 1:2:one_two() one_two ()$\longrightarrow(x, \quad\{x \mapsto 1: 2: x\})$
- $\operatorname{repeat}(\mathrm{n})=\mathrm{n}: \operatorname{repeat}(\mathrm{n})$
$\operatorname{repeat}(1) \longrightarrow(y,\{y \mapsto 1: y\})$
- $\operatorname{incr}(s)=s[+] r e p e a t(1)$

$$
\begin{aligned}
& \operatorname{incr}(\text { one_two }()) \longrightarrow(x[+] y,\{x \mapsto 1: 2: x, y \mapsto 1: y\}) \\
& \text { incr }(\text { one_two }())(0) \longrightarrow(x[+] y)(0) \longrightarrow x(0)+y(0) \longrightarrow \\
& (1: 2: x)(0)+(1: y)(0)
\end{aligned}
$$

Simple examples

- one_two() = 1:2:one_two() one_two ()$\longrightarrow(x, \quad\{x \mapsto 1: 2: x\})$
- $\operatorname{repeat}(\mathrm{n})=\mathrm{n}: \operatorname{repeat}(\mathrm{n})$
$\operatorname{repeat}(1) \longrightarrow(y,\{y \mapsto 1: y\})$
- $\operatorname{incr}(s)=s[+] r e p e a t(1)$

$$
\begin{aligned}
& \operatorname{incr}(\text { one_two }()) \longrightarrow(x[+] y,\{x \mapsto 1: 2: x, y \mapsto 1: y\}) \\
& \text { incr }(\text { one_two }())(0) \longrightarrow(x[+] y)(0) \longrightarrow x(0)+y(0) \longrightarrow \\
& (1: 2: x)(0)+(1: y)(0) \longrightarrow 2
\end{aligned}
$$

Main ingredients of the calculus:

- Operational semantics: evaluation keeps track of already considered function calls, streams represented in a finite way [AnconaBarbierizucca@ICTCS21]

Main ingredients of the calculus:

- Operational semantics: evaluation keeps track of already considered function calls, streams represented in a finite way [AnconaBarbierizucca@ICTCS21]
- Well-definedness check to guarantee safe access to streams [AnconaBarbieriZucca@FLOPS22], [Submitted journal paper]

Main ingredients of the calculus:

- Operational semantics: evaluation keeps track of already considered function calls, streams represented in a finite way [AnconaBarbierizucca@ICTCS21]
- Well-definedness check to guarantee safe access to streams [AnconaBarbieriZucca@FLOPS22], [Submitted journal paper]
- Decidable procedure to check the equality of two streams [AnconaBarbieriZucca@ICTCS22], [Ongoing work]

Semantics

- Shape of the judgment: $e, \rho, \tau \Downarrow\left(v, \rho^{\prime}\right)$

Semantics

- Shape of the judgment: $e, \rho, \tau \Downarrow\left(v, \rho^{\prime}\right)$
- e expression to be evaluated

Semantics

－Shape of the judgment：$e, \rho, \tau \Downarrow\left(v, \rho^{\prime}\right)$
－e expression to be evaluated
－$\rho::=x_{1} \mapsto s_{1} \ldots x_{n} \mapsto s_{n} \quad$ environment

Semantics

- Shape of the judgment: $e, \rho, \tau \Downarrow\left(v, \rho^{\prime}\right)$
- e expression to be evaluated
- $\rho::=x_{1} \mapsto s_{1} \ldots x_{n} \mapsto s_{n} \quad$ environment
- $\tau::=f_{1}\left(\bar{v}_{1}\right) \mapsto x_{1} \ldots f_{n}\left(\bar{v}_{n}\right) \mapsto x_{n} \quad$ call trace

Semantics

- Shape of the judgment: $e, \rho, \tau \Downarrow\left(v, \rho^{\prime}\right)$
- e expression to be evaluated
- $\rho::=x_{1} \mapsto s_{1} \ldots x_{n} \mapsto s_{n} \quad$ environment
- $\tau::=f_{1}\left(\bar{v}_{1}\right) \mapsto x_{1} \ldots f_{n}\left(\bar{v}_{n}\right) \mapsto x_{n} \quad$ call trace
- $\left(v, \rho^{\prime}\right)$ result

Semantics

- Shape of the judgment: $e, \rho, \tau \Downarrow\left(v, \rho^{\prime}\right)$
- e expression to be evaluated
- $\rho::=x_{1} \mapsto s_{1} \ldots x_{n} \mapsto s_{n} \quad$ environment
- $\tau::=f_{1}\left(\bar{v}_{1}\right) \mapsto x_{1} \ldots f_{n}\left(\bar{v}_{n}\right) \mapsto x_{n} \quad$ call trace
- $\left(v, \rho^{\prime}\right)$ result
- Values:

Semantics

- Shape of the judgment: $e, \rho, \tau \Downarrow\left(v, \rho^{\prime}\right)$
- e expression to be evaluated
- $\rho::=x_{1} \mapsto s_{1} \ldots x_{n} \mapsto s_{n} \quad$ environment
- $\tau::=f_{1}\left(\bar{v}_{1}\right) \mapsto x_{1} \ldots f_{n}\left(\bar{v}_{n}\right) \mapsto x_{n} \quad$ call trace
- $\left(v, \rho^{\prime}\right)$ result
- Values:
- $v::=s|n| b \quad$ value
- $s::=x|n: s| s^{\wedge} \mid s_{1}[o p] s_{2} \quad$ (open) stream value

Semantics

- Shape of the judgment: $e, \rho, \tau \Downarrow\left(v, \rho^{\prime}\right)$
- e expression to be evaluated
- $\rho::=x_{1} \mapsto s_{1} \ldots x_{n} \mapsto s_{n} \quad$ environment
- $\tau::=f_{1}\left(\bar{v}_{1}\right) \mapsto x_{1} \ldots f_{n}\left(\bar{v}_{n}\right) \mapsto x_{n} \quad$ call trace
- $\left(v, \rho^{\prime}\right)$ result
- Values:
- $v::=s|n| b \quad$ value
- $s::=x|n: s| s^{\wedge} \mid s_{1}[o p] s_{2} \quad$ (open) stream value
- $n::=0|1| 2 \mid \ldots \quad$ index, numeric value
- $b::=$ true \mid false boolean value

Advanced examples

Examples: non-regular streams

nat() = 0:(nat()[+]repeat(1))

- stream of natural numbers

Examples: non-regular streams

$$
\operatorname{nat}()=0:(n a t()[+] r e p e a t(1))
$$

- stream of natural numbers

```
nat_to_pow(n) = if n <= 0 then repeat(1)
    else nat_to_pow(n-1)[*]nat()
    - nat_to_pow(n)(x)= xn
```


Examples: non-regular streams

$$
\operatorname{nat}()=0:(n a t()[+] r e p e a t(1))
$$

- stream of natural numbers

```
nat_to_pow(n) = if n <= 0 then repeat(1)
    else nat_to_pow(n-1)[*]nat()
    - nat_to_pow(n)(x)= xn
pow(n) = 1:(repeat(n)[*]pow(n))
    - pow(n)(x)= n
```


Examples: non-regular streams

nat() = 0:(nat()[+]repeat(1))

- stream of natural numbers
nat_to_pow(n) $=$ if $n<=0$ then repeat(1) else nat_to_pow(n-1)[*]nat()
- nat_to_pow (n) (x) $=x^{n}$
$\operatorname{pow}(n)=1:(\operatorname{repeat}(n)[*] \operatorname{pow}(n))$
- $\operatorname{pow}(n)(x)=n^{x}$
fact() = 1:((nat()[+]repeat(1))[*]fact())
- factorial

Examples: non-regular streams

nat() = 0:(nat()[+]repeat(1))

- stream of natural numbers
nat_to_pow(n) $=$ if $\mathrm{n}<=0$ then repeat(1) else nat_to_pow(n-1)[*]nat()
- nat_to_pow(n) (x)= x^{n}
$\operatorname{pow}(n)=1:(\operatorname{repeat}(n)[*] \operatorname{pow}(n))$
- $\operatorname{pow}(n)(x)=n^{x}$
fact() = 1:((nat()[+]repeat(1))[*]fact())
- factorial
fib()$=0: 1:\left(\mathrm{fib}()[+] \mathrm{fib}()^{\wedge}\right)$
- stream of Fibonacci numbers

Examples: common functions on streams

```
sum(s)= s(0):(s^[+]sum(s))
```


Examples: common functions on streams

$\operatorname{sum}(s)=s(0):\left(s^{\wedge}[+] \operatorname{sum}(s)\right)$

- stream of partial sums of the first $i+1$ elements of s
- $\operatorname{sum}(s)(i)=\sum_{k=0}^{i} s(k)$

Examples: common functions on streams

$\operatorname{sum}(s)=s(0):\left(s^{\wedge}[+] \operatorname{sum}(s)\right)$

- stream of partial sums of the first $i+1$ elements of s
- $\operatorname{sum}(s)(i)=\sum_{k=0}^{i} s(k)$
$\operatorname{sum} _\operatorname{expn}(n)=\operatorname{sum}(\operatorname{pow}(n)[/] f a c t())$

Examples: common functions on streams

$\operatorname{sum}(s)=s(0):\left(s^{\wedge}[+] \operatorname{sum}(s)\right)$

- stream of partial sums of the first $i+1$ elements of s
- $\operatorname{sum}(s)(i)=\sum_{k=0}^{i} s(k)$
$\operatorname{sum} _\operatorname{expn}(n)=\operatorname{sum}(\operatorname{pow}(n)[/] f a c t())$
- stream of all terms of the Taylor series of the exponential function
- $\operatorname{sum} _\operatorname{expn}(n)(i)=\sum_{k=0}^{i} \frac{n^{k}}{k!}=1+n+\frac{n^{2}}{2!}+\frac{n^{3}}{3!}+\frac{n^{4}}{4!}+\cdots+\frac{n^{i}}{i!}$

Examples: common functions on streams

$\operatorname{sum}(s)=s(0):\left(s^{\wedge}[+] \operatorname{sum}(s)\right)$

- stream of partial sums of the first $i+1$ elements of s
- $\operatorname{sum}(s)(i)=\sum_{k=0}^{i} s(k)$
$\operatorname{sum} _\operatorname{expn}(n)=\operatorname{sum}(\operatorname{pow}(n)[/] f a c t())$
- stream of all terms of the Taylor series of the exponential function
- $\operatorname{sum} _\operatorname{expn}(n)(i)=\sum_{k=0}^{i} \frac{n^{k}}{k!}=1+n+\frac{n^{2}}{2!}+\frac{n^{3}}{3!}+\frac{n^{4}}{4!}+\cdots+\frac{n^{i}}{i!}$

$$
\begin{aligned}
& \operatorname{aggr}(n, s)=\text { if } n<=0 \text { then repeat }(0) \\
& \text { else } s[+] \operatorname{aggr}\left(n-1, s^{\wedge}\right)
\end{aligned}
$$

- $\operatorname{aggr}(3, s)=s^{\prime}$ s.t. $s^{\prime}(i)=s(i)+s(i+1)+s(i+2)$

Examples: common functions on streams

$\operatorname{sum}(s)=s(0):\left(s^{\wedge}[+] \operatorname{sum}(s)\right)$

- stream of partial sums of the first $i+1$ elements of s
- $\operatorname{sum}(s)(i)=\sum_{k=0}^{i} s(k)$
$\operatorname{sum} _\operatorname{expn}(n)=\operatorname{sum}(\operatorname{pow}(n)[/] f a c t())$
- stream of all terms of the Taylor series of the exponential function
- sum _expn(n)(i) $=\sum_{k=0}^{i} \frac{n^{k}}{k!}=1+n+\frac{n^{2}}{2!}+\frac{n^{3}}{3!}+\frac{n^{4}}{4!}+\cdots+\frac{n^{i}}{i!}$

$$
\begin{aligned}
& \operatorname{aggr}(n, s)=\text { if } n<=0 \text { then repeat }(0) \\
& \text { else } s[+] \operatorname{aggr}\left(n-1, s^{\wedge}\right)
\end{aligned}
$$

- $\operatorname{aggr}(3, s)=s^{\prime}$ s.t. $s^{\prime}(i)=s(i)+s(i+1)+s(i+2)$
$\operatorname{avg}(n, s)=\operatorname{aggr}(n, s)[/]$ repeat (n)
- stream of average values of s in the window of length n

Well-definedness of streams

Well-definedness

Definition

Well-defined environment ρ : for each $x \in \operatorname{dom}(\rho)$, access to element $x(k)$ terminates for all $k \in \mathbb{N}$.

Well-definedness

Definition

Well-defined environment ρ : for each $x \in \operatorname{dom}(\rho)$, access to element $x(k)$ terminates for all $k \in \mathbb{N}$.

Examples

$$
\left\{\begin{array}{l}
x \mapsto 1: 2: x \\
y \mapsto x^{\wedge}
\end{array}\right\}
$$

Well-definedness

Definition

Well-defined environment ρ : for each $x \in \rho$, access to element $x(k)$ terminates for all $k \in \mathbb{N}$.

Examples

$$
\left\{\begin{array}{l}
x \mapsto 1: 2: x \\
y \mapsto x^{\wedge}
\end{array}\right\}
$$

Well-definedness

Definition

Well-defined environment ρ : for each $x \in \rho$, access to element $x(k)$ terminates for all $k \in \mathbb{N}$.

Examples

$$
\left\{\begin{array}{l}
x \mapsto 1: 2: x \\
y \mapsto x^{\wedge}
\end{array}\right\} \quad\left\{\begin{array}{l}
x \mapsto 1: y \\
y \mapsto y
\end{array}\right\}
$$

Well-definedness

Definition

Well-defined environment ρ : for each $x \in \rho$, access to element $x(k)$ terminates for all $k \in \mathbb{N}$.

Examples

$$
\left\{\begin{array}{l}
x \mapsto 1: 2: x \\
y \mapsto x^{\wedge}
\end{array}\right\} \quad\left\{\begin{array}{l}
x \mapsto 1: y \\
y \mapsto y
\end{array}\right\}
$$

Equality of streams

Equality

- Stream operators in equations $=$ non-trivial equational theory

Equality

- Stream operators in equations $=$ non-trivial equational theory
- Syntactic equality between cyclic terms provides a too weak notion

Equality

- Stream operators in equations $=$ non-trivial equational theory
- Syntactic equality between cyclic terms provides a too weak notion

Semantic definition

$$
s_{1} \equiv s_{2} \text { iff, for each } k \in \mathbb{N}, s_{1}(k)=s_{2}(k)
$$

An algorithm: examples
Environment $\quad \rho=\{\mathrm{x} \mapsto 1: \mathrm{x}\}$

$$
x \equiv x^{\wedge}
$$

An algorithm: examples
Environment $\quad \rho=\{\mathrm{x} \mapsto 1: \mathrm{x}\}$

$$
\begin{gathered}
x \equiv x^{\wedge} \\
\downarrow \\
x \equiv(1: x)^{\wedge}
\end{gathered}
$$

An algorithm: examples
Environment $\quad \rho=\{\mathrm{x} \mapsto 1: \mathrm{x}\}$

$$
\begin{gathered}
x \equiv x^{\wedge} \\
\downarrow \\
x \equiv(1: x)^{\wedge} \\
\downarrow \\
x \equiv x
\end{gathered}
$$

An algorithm: examples

$$
\begin{gathered}
\text { Environment } \quad \rho=\{\mathrm{x} \mapsto 1: \mathrm{x}, \mathrm{y} \mapsto 1: 1: \mathrm{y}\} \\
\mathrm{x} \equiv \mathrm{y}
\end{gathered}
$$

An algorithm: examples
Environment $\quad \rho=\{\mathrm{x} \mapsto 1: \mathrm{x}, \mathrm{y} \mapsto 1: 1: \mathrm{y}\}$

$$
\begin{gathered}
x \equiv y \\
1: x \neq 1: 1: y
\end{gathered}
$$

An algorithm: examples
Environment $\quad \rho=\{\mathrm{x} \mapsto 1: \mathrm{x}, \mathrm{y} \mapsto 1: 1: \mathrm{y}\}$

$$
\begin{gathered}
x \equiv y \\
1: x \equiv 1: 1: y \\
x \equiv \downarrow \neq y
\end{gathered}
$$

An algorithm: examples
Environment $\quad \rho=\{\mathrm{x} \mapsto 1: \mathrm{x}, \mathrm{y} \mapsto 1: 1: \mathrm{y}\}$

$$
\begin{gathered}
x \equiv y \\
1: x \equiv 1: 1: y \\
x \equiv \downarrow 1: y \\
1: x \xlongequal{\equiv} 1: y
\end{gathered}
$$

An algorithm: examples
Environment $\quad \rho=\{\mathrm{x} \mapsto 1: \mathrm{x}, \mathrm{y} \mapsto 1: 1: \mathrm{y}\}$

$$
\begin{gathered}
x \equiv y \\
1: x \neq 1: 1: y \\
x \neq \downarrow 1: y \\
1: x \neq 1: y \\
x \neq y
\end{gathered}
$$

Relevant tasks and future work

Task 1.1 (Adaptation)

- Only streams of naturals with arithmetic operators considered in the calculus

Relevant tasks and future work

Task 1.1 (Adaptation)

- Only streams of naturals with arithmetic operators considered in the calculus

Aims:

- Make the calculus parametric

Relevant tasks and future work

Task 1.1 (Adaptation)

- Only streams of naturals with arithmetic operators considered in the calculus

Aims:

- Make the calculus parametric
- Indeed, smoothly extending the approach to other data types (booleans, pairs, records, ...)

Relevant tasks and future work

Task 1.1 (Adaptation)

- Only streams of naturals with arithmetic operators considered in the calculus

Aims:

- Make the calculus parametric
- Indeed, smoothly extending the approach to other data types (booleans, pairs, records, ...)
- e.g., an if_then_else_ stream operator whose first argument is a stream of booleans

Relevant tasks and future work

Task 3.2 (Integration of static and dynamic verification)

- Untyped calculus

Relevant tasks and future work

Task 3.2 (Integration of static and dynamic verification)

- Untyped calculus
- The well-definedness check takes place at runtime

Relevant tasks and future work

Task 3.2 (Integration of static and dynamic verification)

- Untyped calculus
- The well-definedness check takes place at runtime

Aims:

- Design a static type system to filter out early errors

Relevant tasks and future work

Task 3.2 (Integration of static and dynamic verification)

- Untyped calculus
- The well-definedness check takes place at runtime

Aims:

- Design a static type system to filter out early errors
- Reduce runtime overhead identifying ill-formed definitions ahead

Relevant tasks and future work

Task 4.4 (Application scenarios)

- Possibility to generate and manipulate a wide variety of streams

Relevant tasks and future work

Task 4.4 (Application scenarios)

- Possibility to generate and manipulate a wide variety of streams
- IoT relevant operations supported

Relevant tasks and future work

Task 4.4 (Application scenarios)

- Possibility to generate and manipulate a wide variety of streams
- loT relevant operations supported

Aims:

- Integration with stream programming:
- Stream generation (sink streams) already supported

Relevant tasks and future work

Task 4.4 (Application scenarios)

- Possibility to generate and manipulate a wide variety of streams
- loT relevant operations supported

Aims:

- Integration with stream programming:
- Stream generation (sink streams) already supported
- Source streams, pipeline to be investigated

Thank You!

Extras

Examples

Example of equality

$$
\begin{gathered}
\text { Environment } \rho=\{x \mapsto 0: 1:(x \| x), y \mapsto 0: 1:((2: y) \| y \hat{)}\} \\
0: 1:(x \| x) \equiv 0: 1:((2: y) \| y \hat{)}
\end{gathered}
$$

Example of equality

Environment $\quad \rho=\{\mathrm{x} \mapsto 0: 1:(\mathrm{x} \| \mathrm{x}), \mathrm{y} \mapsto 0: 1:((2: \mathrm{y}) \| \mathrm{y})\}$

$$
0: 1:(x \| x) \equiv 0: 1:((2: y) \| y) \hat{)}
$$

$$
(x \| x) \equiv((2: y) \| y \hat{y}
$$

Example of equality

Environment $\quad \rho=\{\mathrm{x} \mapsto 0: 1:(\mathrm{x} \| \mathrm{x}), \mathrm{y} \mapsto 0: 1:((2: \mathrm{y}) \| \mathrm{y})\}$

$$
0: 1:(x \| x) \equiv 0: 1:((2: y) \| y) \hat{)}
$$

$$
\begin{aligned}
(x \| x) \equiv & ((2: y) \| y \hat{)} \\
& \downarrow \\
(x \| x) & \equiv(y \| y)
\end{aligned}
$$

Example of equality

Environment $\quad \rho=\{\mathrm{x} \mapsto 0: 1:(\mathrm{x} \| \mathrm{x}), \mathrm{y} \mapsto 0: 1:((2: \mathrm{y}) \| \mathrm{y})\}$

$$
0: 1:(x \| x) \equiv 0: 1:((2: y) \| y) \hat{)}
$$

Example of equality

Environment $\quad \rho=\{\mathrm{x} \mapsto 0: 1:(\mathrm{x} \| \mathrm{x}), \mathrm{y} \mapsto 0: 1:((2: \mathrm{y}) \| \mathrm{y})\}$

$$
0: 1:(x \| x) \equiv 0: 1:((2: y) \| y) \hat{)}
$$

Extras

Semantics of the calculus

Rules (1)

$$
\begin{aligned}
& { }^{(v a t)} \overline{v, \rho, \tau \Downarrow(v, \rho)} \\
& { }_{(\mathbb{1}-\mathrm{Fr})}^{\mathrm{be}, \rho, \tau \Downarrow(\text { true }, \rho)} \mathrm{if} \text { be then } \mathrm{se}, \rho, \tau \Downarrow\left(\mathrm{els}, \rho^{\prime}\right) \\
& { }_{\text {(IF-F) }} \frac{b e, \rho, \tau \Downarrow(\text { false }, \rho) \quad s e_{2}, \rho, \tau \Downarrow\left(s, \rho^{\prime}\right)}{\text { if be then } s e_{1} \text { else } s e_{2}, \rho, \tau \Downarrow\left(s, \rho^{\prime}\right)} \quad \text { (cons) } \frac{n e, \rho, \tau \Downarrow(n, \rho) s e, \rho, \tau \Downarrow\left(s, \rho^{\prime}\right)}{n e: s e, \rho, \tau \Downarrow\left(n: s, \rho^{\prime}\right)} \\
& { }_{(\text {TaII) })}^{s e, \rho, \tau \Downarrow\left(s, \rho^{\prime}\right)} \underset{s e^{\wedge}, \rho, \tau \Downarrow\left(s^{\wedge}, \rho^{\prime}\right)}{ } \\
& \text { (op) } \frac{s e_{1}, \rho, \tau \Downarrow\left(s_{1}, \rho_{1}\right) s e_{2}, \rho, \tau \Downarrow\left(s_{2}, \rho_{2}\right)}{s e_{1} \text { op } s e_{2}, \rho, \tau \Downarrow\left(s_{1} \text { op } s_{2}, \rho_{1} \sqcup \rho_{2}\right)}
\end{aligned}
$$

Rules (2)

$$
\begin{array}{ll}
(\mathrm{ARGS}) & \begin{array}{ll}
e_{i}, \rho, \tau \Downarrow\left(v_{i}, \rho_{i}\right) \forall i \in 1 . . n & f(\bar{v}), \widehat{\rho}, \tau \Downarrow\left(s, \rho^{\prime}\right) \\
f(\bar{e}), \rho, \tau \Downarrow\left(s, \rho^{\prime}\right) & \bar{e}=e_{1}, \ldots, e_{n} \text { not of shape } \bar{v} \\
\bar{v} & =v_{1}, \ldots, v_{n} \\
& \widehat{\rho}=\bigsqcup_{i \in 1 . . n} \rho_{i}
\end{array}
\end{array}
$$

$$
f(\bar{v}) \notin \operatorname{dom}(\tau)
$$

$$
\left(\text { (iNvk) } \frac{s e[\bar{v} / \bar{x}], \rho, \tau\{f(\bar{v}) \mapsto x\} \Downarrow\left(s, \rho^{\prime}\right)}{f(\bar{v}), \rho, \tau \Downarrow\left(x, \rho^{\prime}\{x \mapsto s\}\right)}\right.
$$

$$
x \text { fresh }
$$

$$
f b o d y(f)=(\bar{x}, s e)
$$

$$
w d\left(\rho^{\prime}, x, s\right)
$$

$$
{ }^{(\text {(овве) } \overline{f(\bar{v}), \rho, \tau \Downarrow(x, \rho)}} \quad \tau(f(\bar{v}))=x
$$

Extras

Well-definedness

Well-definedness: an algorithm

$m \quad::=x_{1} \mapsto n_{1} \ldots x_{n} \mapsto n_{k} \quad(n \geq 0) \quad$ map from variables to natural numbers

$$
\begin{aligned}
& \text { (MAIN) } \left.\left.^{\operatorname{wd}_{\rho\{x \mapsto v\}}(x, \emptyset)} \underset{\text { (wd-vaR) }}{ } \frac{\operatorname{wd}_{\rho}(\rho, x, v)}{\operatorname{wd}_{\rho}(x, m)} \quad x \notin \neq 0\right\}\right) \quad x \notin \operatorname{dom}(m) \\
& \text { (wD-cons) } \frac{\operatorname{wd}_{\rho}\left(s, m^{+1}\right)}{\operatorname{wd}_{\rho}(n: s, m)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (wD-NOP) })^{\operatorname{wd}_{\rho}\left(s_{1}, m\right) \operatorname{wd}_{\rho}\left(s_{2}, m\right)} \underset{\operatorname{wd}_{\rho}\left(s_{1}[o p] s_{2}, m\right)}{(\mathrm{wD}-\|)} \frac{\operatorname{wd}_{\rho}\left(s_{1}, m\right) \operatorname{wd}_{\rho}\left(s_{2}, m^{+1}\right)}{\operatorname{wd}_{\rho}\left(s_{1} \| s_{2}, m\right)}
\end{aligned}
$$

Idea: more constructors than tail operators traversed when a cyclic reference is found

On well-definedness

- zeros() $=$ repeat(0)[*] zeros()
- Not well-defined operationally but admits a unique solution

On well-definedness

- A closed result (s, ρ) is well-defined if it denotes a unique stream
- A closed environment ρ is well-defined if, for each $x \in \operatorname{dom}(\rho),(x, \rho)$ is well-defined.
- = the corresponding set of equations admits a unique solution
- $\{x \mapsto 1: x\}$ well-defined
- $\{x \mapsto x\}$ not well-defined
- $\{x \mapsto x[+] y, y \mapsto 1: y\}$ not well-defined

